AoPS Community

2019 Macedonia National Olympiad

The problems from the 26th Macedonian Mathematical Olympiad
www.artofproblemsolving.com/community/c863800
by Lukaluce, Neothehero, IndoMathXdZ

1 In an acute-angled triangle $A B C$, point M is the midpoint of side $B C$ and the centers of the M excircles of triangles $A M B$ and $A M C$ are D and E, respectively. The circumcircle of triangle $A B D$ intersects line $B C$ at points B and F. The circumcircle of triangle $A C E$ intersects line $B C$ at points C and G. Prove that $B F=C G$.

2 Let n be a positive integer. If $r \equiv n(\bmod 2)$ and $r \in\{0,1\}$, find the number of integer solutions to the system of equations

$$
\left\{\begin{array}{l}
x+y+z=r \\
|x|+|y|+|z|=n
\end{array}\right.
$$

3 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=$ $\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.
$4 \quad$ Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
$n!+f(m)!\mid f(n)!+f(m!)$,
for all $m, n \in \mathbb{N}$.
5 Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of these stones and moves it to the right by at most k squares (the stone should say within the board). Sisyphus' aim is to move all n stones to square n.
Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)

