AoPS Community

Czech-Polish-Slovak Match 2014

www.artofproblemsolving.com/community/c865076
by parmenides51

- Day 1

1 Prove that if the positive real numbers a, b, c satisfy the equation

$$
a^{4}+b^{4}+c^{4}+4 a^{2} b^{2} c^{2}=2\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right),
$$

then there is a triangle $A B C$ with internal angles α, β, γ such that

$$
\sin \alpha=a, \quad \sin \beta=b, \quad \sin \gamma=c .
$$

2 For the positive integers a, b, x_{1} we construct the sequence of numbers $\left(x_{n}\right)_{n=1}^{\infty}$ such that $x_{n}=$ $a x_{n-1}+b$ for each $n \geq 2$. Specify the conditions for the given numbers a, b and x_{1} which are necessary and sufficient for all indexes m, n to apply the implication $m\left|n \Rightarrow x_{m}\right| x_{n}$.
(Jaromír Šimša)
3 Given is a convex $A B C D$, which is $|\angle A B C|=|\angle A D C|=135^{\circ}$. On the $A B, A D$ are also selected points M, N such that $|\angle M C D|=|\angle N C B|=90^{\circ}$. The circumcircles of the triangles $A M N$ and $A B D$ intersect for the second time at point $K \neq A$. Prove that lines $A K$ and $K C$ are perpendicular.
(Irán)

- Day 2

4 Let $A B C$ be a triangle, and let P be the midpoint of $A C$. A circle intersects $A P, C P, B C, A B$ sequentially at their inner points K, L, M, N. Let S be the midpoint of $K L$. Let also $2 \cdot|A N|$. $|A B| \cdot|C L|=2 \cdot|C M| \cdot|B C| \cdot|A K|=|A C| \cdot|A K| \cdot|C L|$. Prove that if $P \neq S$, then the intersection of $K N$ and $M L$ lies on the perpendicular bisector of the $P S$.
(Jan Mazák)
5 Let all positive integers n satisfy the following condition:
for each non-negative integers k, m with $k+m \leq n$,
the numbers $\binom{n-k}{m}$ and $\binom{n-m}{k}$ leave the same remainder when divided by 2 .
(Poland)

PS. The translation was done using Google translate and in case it is not right, there is the original text in Slovak
$6 \quad$ Let $n \geq 6$ be an integer and F be the system of the 3 -element subsets of the set $\{1,2, \ldots, n\}$ satisfying the following condition:
for every $1 \leq i<j \leq n$ there is at least $\left\lfloor\frac{1}{3} n\right\rfloor-1$ subsets $A \in F$ such that $i, j \in A$.
Prove that for some integer $m \geq 1$ exist the mutually disjoint subsets $A_{1}, A_{2}, \ldots, A_{m} \in F$ also, that $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{m}\right| \geq n-5$
(Poland)
PS. just in case my translation does not make sense, I leave the original in Slovak, in case someone understands something else

