Art of Problem Solving

AoPS Community

Sharygin Geometry Olympiad 2005

www.artofproblemsolving.com/community/c865802
by parmenides51

- \quad First (Correspondence) Round

1 The chords $A C$ and $B D$ of the circle intersect at point P. The perpendiculars to $A C$ and $B D$ at points C and D, respectively, intersect at point Q. Prove that the lines $A B$ and $P Q$ are perpendicular.

2 Cut a cross made up of five identical squares into three polygons, equal in area and perimeter.
3 Given a circle and a point K inside it. An arbitrary circle equal to the given one and passing through the point K has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.

4 At what smallest n is there a convex n-gon for which the sines of all angles are equal and the lengths of all sides are different?
$5 \quad$ There are two parallel lines p_{1} and p_{2}. Points A and B lie on p_{1}, and C on p_{2}. We will move the segment $B C$ parallel to itself and consider all the triangles $A B^{\prime} C^{\prime}$ thus obtained. Find the locus of the points in these triangles:
a) points of intersection of heights,
b) the intersection points of the medians,
c) the centers of the circumscribed circles.

6 Side $A B$ of triangle $A B C$ was divided into n equal parts (dividing points $B_{0}=A, B_{1}, B_{2}, \ldots, B_{n}=$ B), and side $A C$ of this triangle was divided into $(n+1)$ equal parts (dividing points $C_{0}=$ $A, C_{1}, C_{2}, \ldots, C_{n+1}=C$). Colored are the triangles $C_{i} B_{i} C_{i+1}$ (where $i=1,2, \ldots, n$). What part of the area of the triangle is painted over?

7 Two circles with radii 1 and 2 have a common center at the point O. The vertex A of the regular triangle $A B C$ lies on the larger circle, and the middpoint of the base $C D$ lies on the smaller one. What can the angle $B O C$ be equal to?

8 Around the convex quadrilateral $A B C D$, three rectangles are circumscribed .
It is known that two of these rectangles are squares. Is it true that the third one is necessarily a square?
(A rectangle is circumscribed around the quadrilateral $A B C D$ if there is one vertex $A B C D$ on each side of the rectangle).

AoPS Community

2005 Sharygin Geometry Olympiad

9 Let O be the center of a regular triangle $A B C$. From an arbitrary point P of the plane, the perpendiculars were drawn on the sides of the triangle. Let M denote the intersection point of the medians of the triangle, having vertices the feet of the perpendiculars. Prove that M is the midpoint of the segment $P O$.

10 Cut the non-equilateral triangle into four similar triangles, among which not all are the same.
11 The square was cut into n^{2} rectangles with sides $a_{i} \times b_{j}, i, j=1, \ldots, n$.
For what is the smallest n in the set $\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}$ all the numbers can be different?
12 Construct a quadrangle along the given sides a, b, c, and d and the distance I between the midpoints of its diagonals.

13 A triangle $A B C$ and two lines ℓ_{1}, ℓ_{2} are given. Through an arbitrary point D on the side $A B$, a line parallel to ℓ_{1} intersects the $A C$ at point E and a line parallel to ℓ_{2} intersects the $B C$ at point F. Construct a point D for which the segment $E F$ has the smallest length.

14 Let P be an arbitrary point inside the triangle $A B C$. Let A_{1}, B_{1} and C_{1} denote the intersection points of the straight lines $A P, B P$ and $C P$, respectively, with the sides $B C, C A$ and $A B$. We order the areas of the triangles $A B_{1} C_{1}, A_{1} B C_{1}, A_{1} B_{1} C$. Denote the smaller by S_{1}, the middle by S_{2}, and the larger by S_{3}. Prove that $\sqrt{S_{1} S_{2}} \leq S \leq \sqrt{S_{2} S_{3}}$, where S is the area of the triangle $A_{1} B_{1} S_{1}$.

15 Given a circle centered at the origin.
Prove that there is a circle of smaller radius that has no less points with integer coordinates.
16 We took a non-equilateral acute-angled triangle and marked 4 wonderful points in it: the centers of the inscribed and circumscribed circles, the center of gravity (the point of intersection of the medians) and the intersection point of altitudes. Then the triangle itself was erased. It turned out that it was impossible to establish which of the centers corresponds to each of the marked points. Find the angles of the triangle

17 A circle is inscribed in the triangle $A B C$ and it's center I and the points of tangency P, Q, R with the sides $B C, C A$ and $A B$ are marked, respectively. With a single ruler, build a point K at which the circle passing through the vertices B and C touches (internally) the inscribed circle.

18 On the plane are three straight lines $\ell_{1}, \ell_{2}, \ell_{3}$, forming a triangle, and the point O is marked, the center of the circumscribed circle of this triangle. For an arbitrary point X of the plane, we denote by X_{i} the point symmetric to the point X with respect to the line $\ell_{i}, i=1,2,3$.
a) Prove that for an arbitrary point M the straight lines connecting the midpoints of the segments $O_{1} O_{2}$ and $M_{1} M_{2}, O_{2} O_{3}$ and $M_{2} M_{3}, O_{3} O_{1}$ and $M_{3} M_{1}$ intersect at one point,
b) where can this intersection point lie?

AoPS Community

2005 Sharygin Geometry Olympiad

19 As you know, the moon revolves around the earth. We assume that the Earth and the Moon are points, and the Moon rotates around the Earth in a circular orbit with a period of one revolution per month.
The flying saucer is in the plane of the lunar orbit. It can be jumped through the Moon and the Earth - from the old place (point A), it instantly appears in the new (at point A^{\prime}) so that either the Moon or the Earth is in the middle of segment $A A^{\prime}$. Between the jumps, the flying saucer hangs motionless in outer space.

1) Determine the minimum number of jumps a flying saucer will need to jump from any point inside the lunar orbit to any other point inside the lunar orbit.
2) Prove that a flying saucer, using an unlimited number of jumps, can jump from any point inside the lunar orbit to any other point inside the lunar orbit for any period of time, for example, in a second.

20 Let I be the center of the sphere inscribed in the tetrahedron $A B C D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the centers of the spheres circumscribed around the tetrahedra $I B C D, I C D A, I D A B, I A B C$, respectively. Prove that the sphere circumscribed around $A B C D$ lies entirely inside the circumscribed around $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

21 The planet Tetraincognito covered by ocean has the shape of a regular tetrahedron with an edge of 900 km . What area of the ocean will the tsunami' cover 2 hours after the earthquake with the epicenter in
a) the center of the face,
b) the middle of the edge,
if the tsunami propagation speed is $300 \mathrm{~km} / \mathrm{h}$?
22 Perpendiculars at their centers of gravity (points of intersection of medians) are restored to the faces of the tetrahedron. Prove that the projections of the three perpendiculars to the fourth face intersect at one point.

23 Envelop the cube in one layer with five convex pentagons of equal areas.
24 A triangle is given, all the angles of which are smaller than ϕ, where $\phi<2 \pi / 3$. Prove that in space there is a point from which all sides of the triangle are visible at an angle ϕ.

- \quad Final Round
- \quad grade IX
9.1 The quadrangle $A B C D$ is inscribed in a circle whose center O lies inside it. Prove that if $\angle B A O=\angle D A C$, then the diagonals of the quadrilateral are perpendicular.
9.2 Find all isosceles triangles that cannot be cut into three isosceles triangles with the same sides.
9.3 Given a circle and points A, B on it. Draw the set of midpoints of the segments, one of the ends of which lies on one of the arcs $A B$, and the other on the second.
9.4 Let P be the intersection point of the diagonals of the quadrangle $A B C D, M$ the intersection point of the lines connecting the midpoints of its opposite sides, O the intersection point of the perpendicular bisectors of the diagonals, H the intersection point of the lines connecting the orthocenters of the triangles $A P D$ and $B C P, A P B$ and $C P D$. Prove that M is the midpoint of OH .
9.5 It is given that for no side of the triangle from the height drawn to it, the bisector and the median it is impossible to make a triangle. Prove that one of the angles of the triangle is greater than 135°
- \quad grade X
10.1 A convex quadrangle without parallel sides is given. For each triple of its vertices, a point is constructed that supplements this triple to a parallelogram, one of the diagonals of which coincides with the diagonal of the quadrangle. Prove that of the four points constructed, exactly one lies inside the original quadrangle.
10.2 A triangle can be cut into three similar triangles.

Prove that it can be cut into any number of triangles similar to each other.
10.3 Two parallel chords $A B$ and $C D$ are drawn in a circle with center O.

Circles with diameters $A B$ and $C D$ intersect at point P.
Prove that the midpoint of the segment $O P$ is equidistant from lines $A B$ and $C D$.
10.4 Two segments $A_{1} B_{1}$ and $A_{2} B_{2}$ are given on the plane, with $\frac{A_{2} B_{2}}{A_{1} B_{1}}=k<1$. On segment $A_{1} A_{2}$, point A_{3} is taken, and on the extension of this segment beyond point A_{2}, point A_{4} is taken, so $\frac{A_{3} A_{2}}{A_{3} A_{1}}=\frac{A_{4} A_{2}}{A_{4} A_{1}}=k$. Similarly, point B_{3} is taken on segment $B_{1} B_{2}$, and on the extension of this the segment beyond point B_{2} is point B_{4}, so $\frac{B_{3} B_{2}}{B_{3} B_{1}}=\frac{B_{4} B_{2}}{B_{4} B_{1}}=k$. Find the angle between lines $A_{3} B_{3}$ and $A_{4} B_{4}$.
(Netherlands)
10.5 Two circles of radius 1 intersect at points X, Y, the distance between which is also equal to 1 . From point C of one circle, tangents $C A, C B$ are drawn to the other. Line $C B$ will cross the first circle a second time at point A^{\prime}. Find the distance $A A^{\prime}$.
10.6 Let H be the orthocenter of triangle $A B C, X$ be an arbitrary point. A circle with a diameter of $X H$ intersects lines $A H, B H, C H$ at points A_{1}, B_{1}, C_{1} for the second time, and lines $A X B X, C X$ at points A_{2}, B_{2}, C_{2}. Prove that lines $\mathrm{A}_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ intersect at one point.

- \quad grade XI
11.1 A_{1}, B_{1}, C_{1} are the midpoints of the sides $B C, C A, B A$ respectively of an equilateral triangle $A B C$. Three parallel lines, passing through A_{1}, B_{1}, C_{1} intersect, respectively, lines $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ at points A_{2}, B_{2}, C_{2}. Prove that the lines $A A_{2}, B B_{2}, C C_{2}$ intersect at one point lying on the circle circumscribed around the triangle $A B C$.
11.2 Convex quadrilateral $A B C D$ is given. Lines $B C$ and $A D$ intersect at point O, with B lying on the segment $O C$, and A on the segment $O D$. I is the center of the circle inscribed in the $O A B$ triangle, J is the center of the circle exscribed in the triangle $O C D$ touching the side of $C D$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $I J$ on the lines $B C$ and $A D$ intersect the corresponding sides of the quadrilateral (not the extension) at points X and Y. Prove that the segment $X Y$ divides the perimeter of the quadrilateral $A B C D$ in half, and from all segments with this property and ends on $B C$ and $A D$, segment $X Y$ has the smallest length.
11.3 Inside the inscribed quadrilateral $A B C D$ there is a point K, the distances from which to the sides $A B C D$ are proportional to these sides. Prove that K is the intersection point of the diagonals of $A B C D$.
11.4 In the triangle $A B C, \angle A=\alpha, B C=a$. The inscribed circle touches the lines $A B$ and $A C$ at points M and P. Find the length of the chord cut by the line $M P$ in a circle with diameter $B C$.
11.5 The angle and the point K inside it are given on the plane. Prove that there is a point M with the following property:
if an arbitrary line passing through intersects the sides of the angle at points A and B, then $M K$ is the bisector of the angle $A M B$.
11.6 The sphere inscribed in the tetrahedron $A B C D$ touches its faces at points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$. The segments $A A^{\prime}$ and $B B^{\prime}$ intersect, and the point of their intersection lies on the inscribed sphere. Prove that the segments $C C^{\prime}$ and $D D^{\prime}$ also intersect on the inscribed sphere.

