AoPS Community

www.artofproblemsolving.com/community/c866046
by kalandar

- Wrestlers from towns \boldsymbol{A} and \boldsymbol{B} participated in competition. Number of wrestlers from \boldsymbol{A} is 9 more than the number of wrestlers from \boldsymbol{B}. Every wrestler wrestles with others and took 1 point if he won, 0 otherwise. Total point of team \boldsymbol{A} is 9 more than total point of team \boldsymbol{B}. What is the maximum possible value of points of team B ?
- \quad Medians from vertices A and B are perpendicular in a triangle $A B C$. Show that $A B$ is the shortest side of the triangle.
- \quad Find all triple $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ of natural numbers satisfying the equation $[i][\mathrm{b}] 1+4^{x}+4^{y}=z^{2}[/ \mathrm{b}][/ \mathrm{i}]$.
- \quad Prove that $\frac{a^{2}}{b}+\frac{b^{3}}{c^{2}}+\frac{c^{4}}{a^{3}} \geq-a+2 b+2 c$ where a, b, c are positive real numbers.
- $\quad a, b, c$ are real numbers. Find all triangles with sides a^{n}, b^{n}, c^{n} for all natural number n .
- Integer part of a real number \boldsymbol{a} is the largest integer not exceeding \mathbf{a}. Find integer part of the number $\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\cdots+\frac{2^{2018}}{2018!}$.

