Art of Problem Solving

AoPS Community

Tuymaada Olympiad 1995

www.artofproblemsolving.com/community/c866133
by parmenides51

- \quad day 1

1 Give a geometric proof of the statement that the fold line on a sheet of paper is straight.
2 Let $x_{1}=a, x_{2}=a^{x_{1}}, \ldots, x_{n}=a^{x_{n-1}}$ where $a>1$. What is the maximum value of a for which lim exists $\lim _{n \rightarrow \infty} x_{n}$ and what is this limit?

3 Prove that the equation $(\sqrt{5}+1)^{2 x}+(\sqrt{5}-1)^{2 x}=2^{x}\left(y^{2}+2\right)$ has an infinite number of solutions in natural numbers.

4 It is known that the merchant's n clients live in locations laid along the ring road. Of these, k customers have debts to the merchant for $a_{1}, a_{2}, \ldots, a_{k}$ rubles, and the merchant owes the remaining $n-k$ clients, whose debts are $b_{1}, b_{2}, \ldots, b_{n-k}$ rubles, moreover, $a_{1}+a_{2}+\ldots+a_{k}=$ $b_{1}+b_{2}+\ldots+b_{n-k}$. Prove that a merchant who has no money can pay all his debts and have paid all the customer debts, by starting a customer walk along the road from one of points and not missing any of their customers.

- \quad day 2

6 Given a circle of radius $r=$ 1995. Show that around it you can describe exactly 16 primitive Pythagorean triangles. The primitive Pythagorean triangle is a right-angled triangle, the lengths of the sides of which are expressed by coprime integers.
$5 \quad$ A set consisting of n points of a plane is called an isosceles n-point if any three of its points are located in vertices of an isosceles triangle. Find all natural the numbers for which there exist isosceles n-points.

7 Find a continuous function $f(x)$ satisfying the identity $f(x)-f(a x)=x^{n}-x^{m}$, where $n, m \in$ $N, 0<a<1$

8 Inside the triangle $A B C$ a point M is given. Find the points P, Q and R lying on the sides $A B, B C$ and $A C$ respectively and such so that the sum $M P+P Q+Q R+R M$ is the smallest.

