Art of Problem Solving

AoPS Community

Tuymaada Olympiad 1997

www.artofproblemsolving.com/community/c866135
by parmenides51

- \quad day 1

1 The product of any three of these four natural numbers is a perfect square. Prove that these numbers themselves are perfect squares.

2 Solve in natural numbers the system of equations $3 x^{2}+6 y^{2}+5 z^{2}=1997$ and $3 x+6 y+5 z=161$

3 Is it possible to paint all natural numbers in 6 colors, for each one color to be used and the sum of any five numbers of different color to be painted in the sixth color?
$4 \quad$ Using only angle with angle $\frac{\pi}{7}$ and a ruler, constuct angle $\frac{\pi}{14}$

- \quad day 2

5 Prove the inequality $\left(1+\frac{1}{q}\right)\left(1+\frac{1}{q^{2}}\right) \ldots\left(1+\frac{1}{q^{n}}\right)<\frac{q-1}{q-2}$
for $n \in N, q>2$
6 Are there 14 consecutive positive integers, each of which has a divisor other than 1 and not exceeding 11 ?

7 It is known that every student of the class for Sunday once visited the rink, and every boy met there with every girl. Prove that there was a point in time when all the boys, or all the girls of the class were simultaneously on the rink.

8 Find a right triangle that can be cut into 365 equal triangles.

