

AoPS Community

Tuymaada Olympiad 1997

www.artofproblemsolving.com/community/c866135 by parmenides51

-	day 1
1	The product of any three of these four natural numbers is a perfect square. Prove that these numbers themselves are perfect squares.
2	Solve in natural numbers the system of equations $3x^2 + 6y^2 + 5z^2 = 1997$ and $3x + 6y + 5z = 161$.
3	Is it possible to paint all natural numbers in 6 colors, for each one color to be used and the sum of any five numbers of different color to be painted in the sixth color?
4	Using only angle with angle $rac{\pi}{7}$ and a ruler, constuct angle $rac{\pi}{14}$
-	day 2
5	Prove the inequality $\left(1+\frac{1}{q}\right)\left(1+\frac{1}{q^2}\right)\left(1+\frac{1}{q^n}\right) < \frac{q-1}{q-2}$ for $n \in N, q > 2$
6	Are there 14 consecutive positive integers, each of which has a divisor other than 1 and not exceeding 11 ?
7	It is known that every student of the class for Sunday once visited the rink, and every boy met there with every girl. Prove that there was a point in time when all the boys, or all the girls of the class were simultaneously on the rink.
8	Find a right triangle that can be cut into 365 equal triangles.

AoPS Online AoPS Academy AoPS & AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.