Art of Problem Solving

AoPS Community

Tuymaada Olympiad 1998

www.artofproblemsolving.com/community/c866136
by parmenides51

- \quad day 1

1 Write the number $\frac{1997}{1998}$ as a sum of different numbers, inverse to naturals.
2 Solve the equation $\left(x^{3}-1000\right)^{1 / 2}=\left(x^{2}+100\right)^{1 / 3}$
3 The segment of length ℓ with the ends on the border of a triangle divides the area of that triangle in half. Prove that $\ell>r \sqrt{2}$, where r is the radius of the inscribed circle of the triangle.

4 Given the tetrahedron $A B C D$, whose opposite edges are equal, that is, $A B=C D, A C=B D$ and $B C=A D$. Prove that exist exactly 6 planes intersecting the triangular angles of the tetrahedron and dividing the total surface and volume of this tetrahedron in half.

```
- \(\quad\) day 2
```

5 A right triangle is inscribed in parabola $y=x^{2}$. Prove that it's hypotenuse is not less than 2.
6 Prove that the sequence of the first digits of the numbers in the form $2^{n}+3^{n}$ is nonperiodic.
7 All possible sequences of numbers -1 and +1 of length 100 are considered. For each of them, the square of the sum of the terms is calculated. Find the arithmetic average of the resulting values.

8 Given the pyramid $A B C D$. Let O be the midpoint of edge $A C$. Given that $D O$ is the height of the pyramid, $A B=B C=2 D O$ and the angle $A B C$ is right. Cut this pyramid into 8 equal and similar to it pyramids.

