

AoPS Community

Tuymaada Olympiad 1998

www.artofproblemsolving.com/community/c866136 by parmenides51

-	day 1
1	Write the number $\frac{1997}{1998}$ as a sum of different numbers, inverse to naturals.
2	Solve the equation $(x^3 - 1000)^{1/2} = (x^2 + 100)^{1/3}$
3	The segment of length ℓ with the ends on the border of a triangle divides the area of that triangle in half. Prove that $\ell > r\sqrt{2}$, where r is the radius of the inscribed circle of the triangle.
4	Given the tetrahedron $ABCD$, whose opposite edges are equal, that is, $AB = CD$, $AC = BD$ and $BC = AD$. Prove that exist exactly 6 planes intersecting the triangular angles of the tetrahedron and dividing the total surface and volume of this tetrahedron in half.
-	day 2
5	A right triangle is inscribed in parabola $y = x^2$. Prove that it's hypotenuse is not less than 2.
6	Prove that the sequence of the first digits of the numbers in the form $2^n + 3^n$ is nonperiodic.
7	All possible sequences of numbers -1 and $+1$ of length 100 are considered. For each of them, the square of the sum of the terms is calculated. Find the arithmetic average of the resulting values.
8	Given the pyramid <i>ABCD</i> . Let <i>O</i> be the midpoint of edge <i>AC</i> . Given that <i>DO</i> is the height of the pyramid, $AB = BC = 2DO$ and the angle <i>ABC</i> is right. Cut this pyramid into 8 equal and similar to it pyramids.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.