www.artofproblemsolving.com/community/c866575
by a1267ab

1 Let $A B C$ be an acute scalene triangle with incenter I. Show that the circumcircle of $B I C$ intersects the Euler line of $A B C$ in two distinct points.
(Recall that the Euler line of a scalene triangle is the line that passes through its circumcenter, centroid, orthocenter, and the nine-point center.)

Andrew Gu
2 Annie has a permutation $\left(a_{1}, a_{2}, \ldots, a_{2019}\right)$ of $S=\{1,2, \ldots, 2019\}$, and Yannick wants to guess her permutation. With each guess Yannick gives Annie an n-tuple ($y_{1}, y_{2}, \ldots, y_{2019}$) of integers in S, and then Annie gives the number of indices $i \in S$ such that $a_{i}=y_{i}$.
(a) Show that Yannick can always guess Annie's permutation with at most 1200000 guesses.
(b) Show that Yannick can always guess Annie's permutation with at most 24000 guesses.

Yannick Yao
3 Do there exist four points $P_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}(1 \leq i \leq 4)$ on the plane such that:

- for all $i=1,2,3,4$, the inequality $x_{i}^{4}+y_{i}^{4} \leq x_{i}^{3}+y_{i}^{3}$ holds, and
- for all $i \neq j$, the distance between P_{i} and P_{j} is greater than 1?

Pakawut Jiradilok
4 A cactus is a finite simple connected graph where no two cycles share an edge. Show that in a nonempty cactus, there must exist a vertex which is part of at most one cycle.

Kevin Yang
$5 \quad$ Let $p=2017$ be a prime and \mathbb{F}_{p} be the integers modulo p. A function $f: \mathbb{Z} \rightarrow \mathbb{F}_{p}$ is called good if there is $\alpha \in \mathbb{F}_{p}$ with $\alpha \not \equiv 0(\bmod p)$ such that

$$
f(x) f(y)=f(x+y)+\alpha^{y} f(x-y) \quad(\bmod p)
$$

for all $x, y \in \mathbb{Z}$. How many good functions are there that are periodic with minimal period 2016 ? Ashwin Sah

