AoPS Community

Greece JBMO TST 2019

www.artofproblemsolving.com/community/c866841
by parmenides51, sqing

1 Consider an acute triangle $A B C$ with $A B>A C$ inscribed in a circle of center O. From the midpoint D of side $B C$ we draw line (ℓ) perpendicular to side $A B$ that intersects it at point E. If line $A O$ intersects line (ℓ) at point Z, prove that points A, Z, D, C are concyclic.

2 Find all pairs of positive integers (x, n) that are solutions of the equation $3 \cdot 2^{x}+4=n^{2}$.
3 Let a, b, c be positive real numbers. Prove that

$$
\frac{1}{a b(b+1)(c+1)}+\frac{1}{b c(c+1)(a+1)}+\frac{1}{c a(a+1)(b+1)} \geq \frac{3}{(1+a b c)^{2}} .
$$

4 Consider a 8×8 chessboard where all 64 unit squares are at the start white. Prove that, if any 12 of the 64 unit square get painted black, then we can find 4 lines and 4 rows that have all these 12 unit squares.

