

AoPS Community

KJMO 2006

www.artofproblemsolving.com/community/c868171 by parmenides51

-	day 1
1	$a_1, a_2,, a_{2006}$ is a permutation of $1, 2,, 2006$. Prove that $\prod_{i=1}^{2006} (a_i^2 - i)$ is a multiple of 3. (0 is counted as a multiple of 3)
2	Find all positive integers that can be written in the following way $\frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b} + \frac{a}{c} + \frac{b}{c}$. Also, a, b, c are positive integers that are pairwise relatively prime.
3	In a circle <i>O</i> , there are six points, A, B, C, D, E, F in a counterclockwise order. $BD \perp CF$, and CF, BE, AD are concurrent. Let the perpendicular from <i>B</i> to <i>AC</i> be <i>M</i> , and the perpendicular from <i>D</i> to <i>CE</i> be <i>N</i> . Prove that $AE//MN$.
4	In the coordinate plane, define $M = \{(a, b), a, b \in Z\}$. A transformation S , which is defined on M , sends (a, b) to $(a + b, b)$. Transformation T , also defined on M , sends (a, b) to $(-b, a)$. Prove that for all $(a, b) \in M$, we can use S, T denitely to map it to $(g, 0)$.
-	day 2
5	Find all positive integers that can be written in the following way $\frac{m^2+20mn+n^2}{m^3+n^3}$ Also, m, n are relatively prime positive integers.
6	For all reals a, b, c, d prove the following inequality:
	$\frac{a+b+c+d}{(1+a^2)(1+b^2)(1+c^2)(1+d^2)} < 1$
7	A line through point <i>P</i> outside of circle <i>O</i> meets the said circle at <i>B</i> , <i>C</i> (<i>PB</i> < <i>PC</i>). Let <i>PO</i> meet circle <i>O</i> at <i>Q</i> , <i>D</i> (with $PQ < PD$). Let the line passing <i>Q</i> and perpendicular to <i>BC</i> meet circle <i>O</i> at <i>A</i> . If $BD^2 = AD \cdot CP$, prove that <i>PA</i> is a tangent to <i>O</i> .

8 De ne the set *F* as the following: $F = \{(a_1, a_2, ..., a_{2006}) : \forall i = 1, 2, ..., 2006, a_i \in \{-1, 1\}\}$ Prove that there exists a subset of *F*, called *S* which satis es the following: |S| = 2006and for all $(a_1, a_2, ..., a_{2006}) \in F$ there exists $(b_1, b_2, ..., b_{2006}) \in S$, such that $\sum_{i=1}^{2006} a_i b_i = 0$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.