AoPS Community

KJMO 2007

www.artofproblemsolving.com/community/c868172
by parmenides51

- \quad day 1

1 A sequence $a_{1}, a_{2}, \ldots, a_{2007}$ where $a_{i} \in\{2,3\}$ for $i=1,2, \ldots, 2007$ and an integer sequence $x_{1}, x_{2}, \ldots, x_{2007}$ satis fies the following: $a_{i} x_{i}+x_{i+2} \equiv 0$ (mod5), where the indices are taken modulo 2007. Prove that $x_{1}, x_{2}, \ldots, x_{2007}$ are all multiples of 5 .

2 If n is a positive integer and a, b are relatively prime positive integers, calculate $\left(a+b, a^{n}+b^{n}\right)$.
3 Consider the string of length 6 composed of three characters a, b, c. For each string, if two $a \mathrm{~s}$ are next to each other, or two b s are next to each other, then replace $a a$ by b, and replace $b b$ by a. Also, if a and b are next to each other, or two c s are next to each other, remove all two of them (i.e. delete $a b, b a, c c$). Determine the number of strings that can be reduced to c, the string of length 1 , by the reducing processes mentioned above.

4 Let P be a point inside $\triangle A B C$. Let the perpendicular bisectors of $P A, P B, P C$ be $\ell_{1}, \ell_{2}, \ell_{3}$. Let $D=\ell_{1} \cap \ell_{2}, E=\ell_{2} \cap \ell_{3}, F=\ell_{3} \cap \ell_{1}$. If A, B, C, D, E, F lie on a circle, prove that C, P, D are collinear.

- day 2

5 For all positive real numbers a, b, c. Prove the folllowing inequality

$$
\frac{a}{c+5 b}+\frac{b}{a+5 c}+\frac{c}{b+5 a} \geq \frac{1}{2}
$$

6 Let $T=\{1,2, \ldots, 10\}$. Find the number of bijective functions $f: T \rightarrow T$ that satis es the following for all $x \in T$: $f(f(x))=x|f(x)-x| \geq 2$

7 Let the incircle of $\triangle A B C$ meet $B C, C A, A B$ at J, K, L. Let $D(\neq B, J), E(\neq C, K), F(\neq A, L)$ be points on $B J, C K, A L$. If the incenter of $\triangle A B C$ is the circumcenter of $\triangle D E F$ and $\angle B A C=$ $\angle D E F$, prove that $\triangle A B C$ and $\triangle D E F$ are isosceles triangles.

8 Prime p is called Prime of the Year if there exists a positive integer n such that $n^{2}+1 \equiv 0$ ($\bmod p^{2007}$). Prove that there are in nite number of Primes of the Year.

