AoPS Community

KJMO 2008

www.artofproblemsolving.com/community/c868173
by parmenides51, Ptx2

- day 1

1 In a $\triangle X Y Z$, points A, B lie on segment $Z X, C, D$ lie on segment $X Y, E, F$ lie on segment $Y Z$. A, B, C, D lie on a circle, and $\frac{A Z \cdot E Y \cdot Z B \cdot Y F}{E Z \cdot C Y \cdot Z F \cdot Y D}=1$. Let $L=Z X \cap D E, M=X Y \cap A F, N=Y Z \cap B C$. Prove that L, M, N are collinear.

2 Let $x, y \in \mathbb{R}$ such that $x>2, y>3$. Find the minimum value of $\frac{(x+y)^{2}}{\sqrt{x^{2}-4}+\sqrt{y^{2}-9}}$
3 For all positive integers n, prove that there are integers x, y relatively prime to 5 such that $x^{2}+$ $y^{2}=5^{n}$.
$4 \quad$ Let N be the set of positive integers.
If $A, B, C \neq \emptyset, A \cap B=B \cap C=C \cap A=\emptyset$ and $A \cup B \cup C=N$, we say that A, B, C are partitions of N. Prove that there are no partitions of N, A, B, C, that satis fies the following.
(i) $\forall a \in A, b \in B$, we have $a+b+1 \in C$
(ii) $\forall b \in B, c \in C$, we have $b+c+1 \in A$
(iii) $\forall c \in C, a \in A$, we have $c+a+1 \in B$

- day 2

5 Let there be a pentagon $A B C D E$ inscribed in a circle O. The tangent to O at E is parallel to $A D$. A point F lies on O and it is in the opposite side of A with respect to $C D$, and satisfi es $A B \cdot B C \cdot D F=A E \cdot E D \cdot C F$ and $\angle C F D=2 \angle B F E$. Prove that the tangent to O at B, E and line $A F$ concur at one point.

6 If $d_{1}, d_{2}, \ldots, d_{k}$ are all distinct positive divisors of n, we defi ne $f_{s}(n)=d_{1}^{s}+d_{2}^{s}+. .+d_{k}^{s}$.
For example, we have $f_{1}(3)=1+3=4, f_{2}(4)=1+2^{2}+4^{2}=21$.
Prove that for all positive integers $n, n^{3} f_{1}(n)-2 n f_{9}(n)+n^{2} f_{3}(n)$ is divisible by 8 .
7 Find all pairs of functions $f ; g: R \rightarrow R$ such that for all reals $x . y \neq 0$:

$$
f(x+y)=g\left(\frac{1}{x}+\frac{1}{y}\right) \cdot(x y)^{2008}
$$

8 There are 12 members in a club. The members created some small groups, which satisfy the following:

- The small group consists of 3 or 4 people.
- Also, for two arbitrary members, there exists exactly one small group that has both members. Prove that all members are in the same number of small groups.

