AoPS Community

KJMO 2009

www.artofproblemsolving.com/community/c868174
by parmenides51, yojan_sushi, jasonhu4

- \quad day 1

1 For primes a, b, c that satis fies the following, calculate $a b c . b+8$ is a multiple of a, and $b^{2}-1$ is a multiple of a and c. Also, $b+c=a^{2}-1$.

2 In an acute triangle $\triangle A B C$, let $A^{\prime}, B^{\prime}, C^{\prime}$ be the reflection of A, B, C with respect to $B C, C A, A B$. Let $D=B^{\prime} C \cap B C^{\prime}, E=C A^{\prime} \cap C^{\prime} A, F=A^{\prime} B \cap A B^{\prime}$. Prove that $A D, B E, C F$ are concurrent

3 For two arbitrary reals x, y which are larger than 0 and less than 1 . Prove that

$$
\frac{x^{2}}{x+y}+\frac{y^{2}}{1-x}+\frac{(1-x-y)^{2}}{1-y} \geq \frac{1}{2}
$$

4 There are n clubs composed of 4 students out of all 9 students. For two arbitrary clubs, there are no more than 2 students who are a member of both clubs. Prove that $n \leq 18$.
Translator's Note. We can prove $n \leq 12$, and we can prove that the bound is tight.
(Credits to rkm0959 for translation and document)

- \quad day 2

5 Acute triangle $\triangle A B C$ satis es $A B<A C$. Let the circumcircle of this triangle be O, and the midpoint of $B C, C A, A B$ be D, E, F. Let P be the intersection of the circle with $A B$ as its diameter and line $D F$, which is in the same side of C with respect to $A B$. Let Q be the intersection of the circle with $A C$ as its diameter and the line $D E$, which is in the same side of B with respect to $A C$. Let $P Q \cap B C=R$, and let the line passing through R and perpendicular to $B C$ meet $A O$ at X. Prove that $A X=X R$.

6 If positive reals a, b, c, d satisfy $a b c d=1$. Prove the following inequality

$$
1<\frac{b}{a b+b+1}+\frac{c}{b c+c+1}+\frac{d}{c d+d+1}+\frac{a}{d a+a+1}<2 .
$$

7 There are 3 students from Korea, China, and Japan, so total of 9 students are present. How many ways are there to make them sit down in a circular table, with equally spaced and equal chairs, such that the students from the same country do not sit next to each other? If array A can become array B by rotation, these two arrays are considered equal.

8 Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}$, and e be positive integers. Are there any solutions to $a^{2}+b^{3}+c^{5}+d^{7}=e^{11}$?

