Art of Problem Solving

AoPS Community

KJMO 2010

www.artofproblemsolving.com/community/c868175
by parmenides51, Ikeronalio, Ptx2

- \quad day 1

1 Prove that $7^{22^{20}}+7^{2^{19}}+1$ has at least 21 distinct prime divisors.
2 Let there be a $n \times n$ board. Write down 0 or 1 in all n^{2} squares. For $1 \leq k \leq n$, let A_{k} be the product of all numbers in the k th row. How many ways are there to write down the numbers so that $A_{1}+A_{2}+\ldots+A_{n}$ is even?

3 In an acute triangle $\triangle A B C$, let there be point D on segment $A C, E$ on segment $A B$ such that $\angle A D E=\angle A B C$. Let the bisector of $\angle A$ hit $B C$ at K. Let the foot of the perpendicular from K to $D E$ be P, and the foot of the perpendicular from A to $D E$ be L. Let Q be the midpoint of $A L$. If the incenter of $\triangle A B C$ lies on the circumcircle of $\triangle A D E$, prove that P, Q and the incenter of $\triangle A D E$ are collinear.

4 Let there be a sequence a_{n} such that $a_{1}=2, a_{2}=0, a_{3}=1, a_{4}=0$, and for $n \geq 1, a_{n+4}$ is the remainder
when $a_{n}+2 a_{n+1}+3 a_{n+2}+4 a_{n+3}$ is divided by 9 . Prove that there are no positive integer k such that $a_{k}=0, a_{k+1}=1, a_{k+2}=0, a_{k+3}=2$.

- \quad day 2

5 If reals x, y, z satises $\tan x+\tan y+\tan z=2$ and $0<x, y, z<\frac{\pi}{2}$. Prove that

$$
\sin ^{2} x+\sin ^{2} y+\sin ^{2} z<1 .
$$

$6 \quad$ Let $n \in \mathbb{N}$ and p is the odd prime number. Define the sequence a_{n} such that $a_{1}=p n+1$ and $a_{k+1}=n a_{k}+1$ for all $k \in \mathbb{N}$. Prove that a_{p-1} is compound number.

7 Let $A B C D$ be a cyclic convex quadrilateral. Let E be the intersection of lines $A B, C D . P$ is the intersection of line passing B and perpendicular to $A C$, and line passing C and perpendicular to $B D . Q$ is the intersection of line passing D and perpendicular to $A C$, and line passing A and perpendicular to $B D$. Prove that three points E, P, Q are collinear.

8 In a rectangle with vertices $(0,0),(0,2),(n, 0),(n, 2),(n$ is a positive integer) find the number of longest paths
starting from $(0,0)$ and arriving at $(n, 2)$ which satis fies the following:

At each movement, you can move right, up, left, down by 1. You cannot visit a point you visited before. You cannot move outside the rectangle.

