

AoPS Community

2010 Korea Junior Math Olympiad

KJMO 2010

www.artofproblemsolving.com/community/c868175 by parmenides51, Ikeronalio, Ptx2

-	day 1
1	Prove that $7^{2^{20}} + 7^{2^{19}} + 1$ has at least 21 distinct prime divisors.
2	Let there be a $n \times n$ board. Write down 0 or 1 in all n^2 squares. For $1 \le k \le n$, let A_k be the product of all numbers in the <i>k</i> th row. How many ways are there to write down the numbers so that $A_1 + A_2 + + A_n$ is even?
3	In an acute triangle $\triangle ABC$, let there be point D on segment AC , E on segment AB such that $\angle ADE = \angle ABC$. Let the bisector of $\angle A$ hit BC at K . Let the foot of the perpendicular from K to DE be P , and the foot of the perpendicular from A to DE be L . Let Q be the midpoint of AL . If the incenter of $\triangle ABC$ lies on the circumcircle of $\triangle ADE$, prove that P, Q and the incenter of $\triangle ADE$ are collinear.
4	Let there be a sequence a_n such that $a_1 = 2, a_2 = 0, a_3 = 1, a_4 = 0$, and for $n \ge 1, a_{n+4}$ is the remainder when $a_n + 2a_{n+1} + 3a_{n+2} + 4a_{n+3}$ is divided by 9. Prove that there are no positive integer k such that $a_k = 0, a_{k+1} = 1, a_{k+2} = 0, a_{k+3} = 2$.
_	day 2
5	If reals x, y, z satises $tan x + tan y + tan z = 2$ and $0 < x, y, z < \frac{\pi}{2}$. Prove that
	$\sin^2 x + \sin^2 y + \sin^2 z < 1.$
6	Let $n \in \mathbb{N}$ and p is the odd prime number. Define the sequence a_n such that $a_1 = pn + 1$ and $a_{k+1} = na_k + 1$ for all $k \in \mathbb{N}$. Prove that a_{p-1} is compound number.
7	Let $ABCD$ be a cyclic convex quadrilateral. Let E be the intersection of lines AB, CD . P is the intersection of line passing B and perpendicular to AC , and line passing C and perpendicular to BD . Q is the intersection of line passing D and perpendicular to AC , and line passing A and perpendicular to BD . Prove that three points E, P, Q are collinear.
8	In a rectangle with vertices $(0,0), (0,2), (n,0), (n,2)$, (<i>n</i> is a positive integer) find the number of longest paths starting from $(0,0)$ and arriving at $(n,2)$ which satis fies the following:

AoPS Community

2010 Korea Junior Math Olympiad

At each movement, you can move right, up, left, down by 1. You cannot visit a point you visited before. You cannot move outside the rectangle.

🐼 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.