Art of Problem Solving

AoPS Community

KJMO 2011

www.artofproblemsolving.com/community/c868176
by parmenides51, seoneo

- \quad day 1

1 Real numbers a, b, c which are differ from 1 satisfies the following conditions;
(1) $a b c=1$
(2) $a^{2}+b^{2}+c^{2}-\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)=8(a+b+c)-8(a b+b c+c a)$

Find all possible values of expression $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}$.
2 Let $A B C D$ be a cyclic quadrilateral inscirbed in circle O. Let the tangent to O at A meet $B C$ at S, and the tangent to O at B meet $C D$ at T. Circle with S as its center and passing A meets $B C$ at E, and $A E$ meets O again at $F(\neq A)$. The circle with T as its center and passing B meets $C D$ at K. Let $P=B K \cap A C$. Prove that P, F, D are collinear if and only if $A B=A P$.

3 Let x, y be positive integers such that $\operatorname{gcd}(x, y)=1$ and $x+3 y^{2}$ is a perfect square. Prove that $x^{2}+9 y^{4}$ can't be a perfect square.

4 For a positive integer $n,(n \geq 2)$, find the number of sets with $2 n+1$ points $P_{0}, P_{1}, \ldots, P_{2 n}$ in the coordinate plane satisfying the following as its elements:

- $P_{0}=(0,0), P_{2 n}=(n, n)$
- For all $i=1,2, \ldots, 2 n-1$, line $P_{i} P_{i+1}$ is parallel to x-axis or y-axis and its length is 1 .
- Out of $2 n$ lines $P_{0} P_{1}, P_{1} P_{2}, \ldots, P_{2 n-1} P_{2 n}$, there are exactly 4 lines that are enclosed in the domain $y \leq x$.

- \quad day 2

5 In triangle $A B C,(A B \neq A C)$, let the orthocenter be H, circumcenter be O, and the midpoint of $B C$ be M. Let $H M \cap A O=D$. Let P, Q, R, S be the midpoints of $A B, C D, A C, B D$. Let $X=P Q \cap R S$. Find $A H / O X$.
$6 \quad$ For a positive integer n, define the set S_{n} as $S_{n}=\{(a, b) \mid a, b \in N, l c m[a, b]=n\}$.
Let $f(n)$ be the sum of $\phi(a) \phi(b)$ for all $(a, b) \in S_{n}$.
If a prime p relatively prime to n is a divisor of $f(n)$,
prove that there exists a prime $q \mid n$ such that $p \mid q^{2}-1$.
7 For those real numbers $x_{1}, x_{2}, \ldots, x_{2011}$ where each of which satisfies $0 \leq x_{1} \leq 1(i=1,2, \ldots, 2011)$,
find the maximum of

$$
x_{1}^{3}+x_{2}^{3}+\cdots+x_{2011}^{3}-\left(x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{2011} x_{1} x_{2}\right)
$$

$8 \quad$ There are n students each having r positive integers. Their $n r$ positive integers are all different. Prove that we can divide the students into k classes satisfying the following conditions:
(a) $k \leq 4 r$
(b) If a student A has the number m, then the student B in the same class can't have a number ℓ such that $(m-1)!<\ell<(m+1)!+1$

