

AoPS Community

2011 Korea Junior Math Olympiad

KJMO 2011

www.artofproblemsolving.com/community/c868176 by parmenides51, seoneo

-	day 1
1	Real numbers <i>a</i> , <i>b</i> , <i>c</i> which are differ from 1 satisfies the following conditions; (1) $abc = 1$ (2) $a^2 + b^2 + c^2 - \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) = 8(a + b + c) - 8(ab + bc + ca)$ Find all possible values of expression $\frac{1}{a-1} + \frac{1}{b-1} + \frac{1}{c-1}$.
2	Let $ABCD$ be a cyclic quadrilateral inscirbed in circle O . Let the tangent to O at A meet BC at S , and the tangent to O at B meet CD at T . Circle with S as its center and passing A meets BC at E , and AE meets O again at $F(\neq A)$. The circle with T as its center and passing B meets CD at K . Let $P = BK \cap AC$. Prove that P, F, D are collinear if and only if $AB = AP$.
3	Let x, y be positive integers such that $gcd(x, y) = 1$ and $x + 3y^2$ is a perfect square. Prove that $x^2 + 9y^4$ can't be a perfect square.
4	For a positive integer n , $(n \ge 2)$, find the number of sets with $2n + 1$ points $P_0, P_1,, P_{2n}$ in the coordinate plane satisfying the following as its elements: - $P_0 = (0, 0), P_{2n} = (n, n)$ - For all $i = 1, 2,, 2n - 1$, line $P_i P_{i+1}$ is parallel to x-axis or y-axis and its length is 1. - Out of $2n$ lines $P_0 P_1, P_1 P_2,, P_{2n-1} P_{2n}$, there are exactly 4 lines that are enclosed in the domain $y \le x$.
-	day 2
5	In triangle <i>ABC</i> , ($AB \neq AC$), let the orthocenter be <i>H</i> , circumcenter be <i>O</i> , and the midpoint of <i>BC</i> be <i>M</i> . Let $HM \cap AO = D$. Let P,Q,R,S be the midpoints of <i>AB</i> , <i>CD</i> , <i>AC</i> , <i>BD</i> . Let $X = PQ \cap RS$. Find AH/OX .
6	For a positive integer n , define the set S_n as $S_n = \{(a, b) a, b \in N, lcm[a, b] = n\}$. Let $f(n)$ be the sum of $\phi(a)\phi(b)$ for all $(a, b) \in S_n$. If a prime p relatively prime to n is a divisor of $f(n)$, prove that there exists a prime $q n$ such that $p q^2 - 1$.
7	For those real numbers $x_1, x_2, \ldots, x_{2011}$ where each of which satisfies $0 \le x_1 \le 1$ ($i = 1, 2, \ldots, 20$)

AoPS Community

2011 Korea Junior Math Olympiad

find the maximum of

$$x_1^3 + x_2^3 + \dots + x_{2011}^3 - (x_1 x_2 x_3 + x_2 x_3 x_4 + \dots + x_{2011} x_1 x_2)$$

8 There are n students each having r positive integers. Their nr positive integers are all different. Prove that we can divide the students into k classes satisfying the following conditions: (a) $k \le 4r$

(b) If a student A has the number m, then the student B in the same class can't have a number ℓ such that $(m-1)! < \ell < (m+1)! + 1$

AOPSOnline AOPSAcademy AOPS