AoPS Community

KJMO 2012

www.artofproblemsolving.com/community/c868177
by parmenides51, seoneo, Ptx2

- \quad day 1

1 Prove the following inequality where positive reals a, b, c satisfies $a b+b c+c a=1$.

$$
\frac{a+b}{\sqrt{a b(1-a b)}}+\frac{b+c}{\sqrt{b c(1-b c)}}+\frac{c+a}{\sqrt{c a(1-c a)}} \leq \frac{\sqrt{2}}{a b c}
$$

2 A pentagon $A B C D E$ is inscribed in a circle O, and satis fies $\angle A=90^{\circ}, A B=C D$. Let F be a point on segment $A E$. Let $B F$ hit O again at $J(\neq B), C E \cap D J=K, B D \cap F K=L$. Prove that B, L, E, F are cyclic.

3 Find all $l, m, n \in \mathbb{N}$ that satisfies the equation $5^{l} 43^{m}+1=n^{3}$
4 There are n students $A_{1}, A_{2}, \ldots, A_{n}$ and some of them shaked hands with each other. (A_{i} and $A-j$ can shake hands more than one time.) Let the student A_{i} shaked hands d_{i} times. Suppose $d_{1}+d_{2}+\ldots+d_{n}>0$. Prove that there exist $1 \leq i<j \leq n$ satisfying the following conditions:
(a) Two students A_{i} and A_{j} shaked hands each other.
(b) $\frac{\left(d_{1}+d_{2}+\ldots+d_{n}\right)^{2}}{n^{2}} \leq d_{i} d_{j}$

- \quad day 2

5 Let $A B C D$ be a cyclic quadrilateral inscirbed in a circle $O(A B>A D)$, and let E be a point on segment $A B$ such that $A E=A D$. Let $A C \cap D E=F$, and $D E \cap O=K(\neq D)$. The tangent to the circle passing through C, F, E at E hits $A K$ at L. Prove that $A L=A D$ if and only if $\angle K C E=\angle A L E$.
$6 \quad p>3$ is a prime number such that $p \mid 2^{p-1}-1$ and $p \nmid 2^{x}-1$ for $x=1,2, \ldots, p-2$. Let $p=2 k+3$. Now we define sequence $\left\{a_{n}\right\}$ as

$$
a_{i}=a_{i+k}=2^{i}(1 \leq i \leq k), \quad a_{j+2 k}=a_{j} a_{j+k}(j \leq 1)
$$

Prove that there exist $2 k$ consecutive terms of sequence $a_{x+1}, a_{x+2}, \ldots, a_{x+2 k}$ such that $a_{x+i} \not \equiv$ $a_{x+j}(\bmod p)$ for all $1 \leq i<j \leq 2 k$.

7 If all $x_{k}(k=1,2,3,4,5)$ are positive reals, and $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}=\{1,2,3,4,5\}$, find the maximum of

$$
\frac{\left(\sqrt{s_{1} x_{1}}+\sqrt{s_{2} x_{2}}+\sqrt{s_{3} x_{3}}+\sqrt{s_{4} x_{4}}+\sqrt{s_{5} x_{5}}\right)^{2}}{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}+a_{5} x_{5}}
$$

$\left(s_{k}=a_{1}+a_{2}+\ldots+a_{k}\right)$
8 Let there be n students, numbered 1 through n. Let there be n cards with numbers 1 through n written on them. Each student picks a card from the stack, and two students are called a pair if they pick each other's number. Let the probability that there are no pairs be p_{n}.
Prove that $p_{n}-p_{n-1}$ is 0 is n is odd, and
prove that $p_{n}-p_{n-1}=\frac{1}{(-2)^{k} k^{1-k}}$ if $n=2 k$.

