AoPS Community

KJMO 2013

www.artofproblemsolving.com/community/c868178
by parmenides51, seoneo, syk0526

- \quad day 1

1 Compare the magnitude of the following three numbers.

$$
\sqrt[3]{\frac{25}{3}}, \sqrt[3]{\frac{1148}{135}}, \frac{\sqrt[3]{25}}{3}+\sqrt[3]{\frac{6}{5}}
$$

2 A pentagon $A B C D E$ is inscribed in a circle O, and satis es $A B=B C, A E=D E$. The circle that is tangent to $D E$ at E and passing A hits $E C$ at F and $B F$ at $G(\neq F)$. Let $D G \cap O=H(\neq$ $D)$. Prove that the tangent to O at E is perpendicular to $H A$.
$3 \quad\left\{a_{n}\right\}$ is a positive integer sequence such that $a_{i+2}=a_{i+1}+a_{i}$ (for all $i \geq 1$).
For positive integer n, de fine as

$$
b_{n}=\frac{1}{a_{2 n+1}} \Sigma_{i=1}^{4 n-2} a_{i}
$$

Prove that b_{n} is positive integer.
4 Prove that there exists a prime number p such that the minimum positive integer n such that $p \mid 2^{n}-1$ is 3^{2013}.

- \quad day 2

5 In an acute triangle $\triangle A B C, \angle A>\angle B$. Let the midpoint of $A B$ be D, and let the foot of the perpendicular from A to $B C$ be E, and B from $C A$ be F. Let the circumcenter of $\triangle D E F$ be O. A point J on segment $B E$ satisfi es $\angle O D C=\angle E A J$. Prove that $A J \cap D C$ lies on the circumcircle of $\triangle B D E$.
$6 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
f(m n)=\operatorname{lcm}(m, n) \cdot \operatorname{gcd}(f(m), f(n))
$$

for all positive integer m, n.
7 Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be such that for every positive integer n, followings are satisfied.
i. $f(n+1)>f(n)$
ii. $f(f(n))=2 n+2$

Find the value of $f(2013)$.
(Here, \mathbb{N} is the set of all positive integers.)
8 Drawing all diagonals in a regular 2013-gon, the regular 2013-gon is divided into non-overlapping polygons.
Prove that there exist exactly one 2013-gon out of all such polygons.

