

AoPS Community

2014 Korea Junior Math Olympiad

KJMO 2014

www.artofproblemsolving.com/community/c868179 by parmenides51, Iminsl, rkm0959

– day 1

- **1** Given $\triangle ABC$ with incenter *I*. Line *AI* meets *BC* at *D*. The incenter of $\triangle ABD$, $\triangle ADC$ are *E*, *F*, respectively. Line *DE* meets the circumcircle of $\triangle BCE$ at $P(\neq E)$ and line *DF* meets the circumcircle of $\triangle BCF$ at $Q(\neq F)$. Show that the midpoint of *BC* lies on the circumcircle of $\triangle DPQ$.
- 2 Let there be 2n positive reals $a_1, a_2, ..., a_{2n}$. Let $s = a_1 + a_3 + ... + a_{2n-1}$, $t = a_2 + a_4 + ... + a_{2n}$, and $x_k = a_k + a_{k+1} + ... + a_{k+n-1}$ (indices are taken modulo 2n). Prove that

 $\frac{s}{x_1} + \frac{t}{x_2} + \frac{s}{x_3} + \frac{t}{x_4} + \dots + \frac{s}{x_{2n-1}} + \frac{t}{x_{2n}} > \frac{2n^2}{n+1}$

- **3** Find the number of *n*-movement on the following graph, starting from *S*.
- 4 Positive integers p, q, r satisfy gcd(a, b, c) = 1. Prove that there exists an integer a such that gcd(p, q + ar) = 1.
- day 2
- **5** For positive integers x, y, find all pairs (x, y) such that $x^2y + x$ is a multiple of $xy^2 + 7$.
- 6 Let $p = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$. For nonnegative reals x, y, z satisfying $(x-1)^2 + (y-1)^2 + (z-1)^2 = 27$, find the maximum value of $x^p + y^p + z^p$.

7 In a parallelogram $\Box ABCD (AB < BC)$ The incircle of $\triangle ABC$ meets \overline{BC} and \overline{CA} at P, Q. The incircle of $\triangle ACD$ and \overline{CD} meets at R. Let $S = PQ \cap ADU = AR \cap CST$, a point on \overline{BC} such that $\overline{AB} = \overline{BT}$

Prove that AT, BU, PQ are concurrent

8 Let there be *n* students and *m* clubs. The students joined the clubs so that the following is true:

- For all students x, you can choose some clubs such that x is the only student who joined all of the chosen clubs.

2014 Korea Junior Math Olympiad

AoPS Community

Let the number of clubs each student joined be $a_1, a_2, ..., a_m$. Prove that

 $a_1!(m-a_1)! + a_2!(m-a_2)! + \dots + a_n!(m-a_n)! \le m!$

AoPS Online AoPS Academy AoPS & CADEMY