## AoPS Community

## KJMO 2014

www.artofproblemsolving.com/community/c868179
by parmenides51, Iminsl, rkm0959

- day 1

1 Given $\triangle A B C$ with incenter $I$. Line $A I$ meets $B C$ at $D$. The incenter of $\triangle A B D, \triangle A D C$ are $E, F$, respectively. Line $D E$ meets the circumcircle of $\triangle B C E$ at $P(\neq E)$ and line $D F$ meets the circumcircle of $\triangle B C F$ at $Q(\neq F)$.
Show that the midpoint of $B C$ lies on the circumcircle of $\triangle D P Q$.
2 Let there be $2 n$ positive reals $a_{1}, a_{2}, \ldots, a_{2 n}$. Let $s=a_{1}+a_{3}+\ldots+a_{2 n-1}, t=a_{2}+a_{4}+\ldots+a_{2 n}$, and $x_{k}=a_{k}+a_{k+1}+\ldots+a_{k+n-1}$ (indices are taken modulo $2 n$ ). Prove that

$$
\frac{s}{x_{1}}+\frac{t}{x_{2}}+\frac{s}{x_{3}}+\frac{t}{x_{4}}+\ldots+\frac{s}{x_{2 n-1}}+\frac{t}{x_{2 n}}>\frac{2 n^{2}}{n+1}
$$

3 Find the number of $n$-movement on the following graph, starting from $S$.
$4 \quad$ Positive integers $p, q, r$ satisfy $\operatorname{gcd}(a, b, c)=1$.
Prove that there exists an integer $a$ such that $\operatorname{gcd}(p, q+a r)=1$.

## - $\quad$ day 2

$5 \quad$ For positive integers $x, y$, find all pairs $(x, y)$ such that $x^{2} y+x$ is a multiple of $x y^{2}+7$.
$6 \quad$ Let $p=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}$. For nonnegative reals $x, y$, $z$ satisfying $(x-1)^{2}+(y-1)^{2}+(z-1)^{2}=$ 27 , find the maximum value of $x^{p}+y^{p}+z^{p}$.

7 In a parallelogram $\square A B C D(A B<B C)$
The incircle of $\triangle A B C$ meets $\overline{B C}$ and $\overline{C A}$ at $P, Q$.
The incircle of $\triangle A C D$ and $\overline{C D}$ meets at $R$.
Let $S=P Q \cap A D U=A R \cap C S T$, a point on $\overline{B C}$ such that $\overline{A B}=\overline{B T}$
Prove that $A T, B U, P Q$ are concurrent
8 Let there be $n$ students and $m$ clubs. The students joined the clubs so that the following is true:

- For all students $x$, you can choose some clubs such that $x$ is the only student who joined all of the chosen clubs.

Let the number of clubs each student joined be $a_{1}, a_{2}, \ldots, a_{m}$. Prove that

$$
a_{1}!\left(m-a_{1}\right)!+a_{2}!\left(m-a_{2}\right)!+\ldots+a_{n}!\left(m-a_{n}\right)!\leq m!
$$

