

AoPS Community

2015 Korea Junior Math Olympiad

KJMO 2015

www.artofproblemsolving.com/community/c868180 by parmenides51, rkm0959

-	day 1
1	In an acute, scalene triangle $\triangle ABC$, let O be the circumcenter. Let M be the midpoint of AC . Let the perpendicular from A to BC be D . Let the circumcircle of $\triangle OAM$ hit DM at $P(\neq M)$. Prove that B, O, P are colinear.
2	For a positive integer m , prove that the number of pairs of positive integers (x, y) which satisfies the following two conditions is even or 0 .
	(i): $x^2 - 3y^2 + 2 = 16m$
	(ii): $2y \le x - 1$
3	For all nonnegative integer i , there are seven cards with 2^i written on it. How many ways are there to select the cards so that the numbers add up to n ?
4	Reals a, b, c, x, y satisfy $a^2 + b^2 + c^2 = x^2 + y^2 = 1$. Find the maximum value of
	$(ax+by)^2 + (bx+cy)^2$
-	day 2
- 5	day 2 Let <i>I</i> be the incenter of an acute triangle $\triangle ABC$, and let the incircle be Γ . Let the circumcircle of $\triangle IBC$ hit Γ at <i>D</i> , <i>E</i> , where <i>D</i> is closer to <i>B</i> and <i>E</i> is closer to <i>C</i> . Let $\Gamma \cap BE = K(\neq E), CD \cap BI = T$, and $CD \cap \Gamma = L(\neq D)$. Let the line passing <i>T</i> and perpendicular to <i>BI</i> meet Γ at <i>P</i> , where <i>P</i> is inside $\triangle IBC$. Prove that the tangent to Γ at <i>P</i> , <i>KL</i> , <i>BI</i> are concurrent.
- 5 6	day 2 Let <i>I</i> be the incenter of an acute triangle $\triangle ABC$, and let the incircle be Γ . Let the circumcircle of $\triangle IBC$ hit Γ at <i>D</i> , <i>E</i> , where <i>D</i> is closer to <i>B</i> and <i>E</i> is closer to <i>C</i> . Let $\Gamma \cap BE = K(\neq E), CD \cap BI = T$, and $CD \cap \Gamma = L(\neq D)$. Let the line passing <i>T</i> and perpendicular to <i>BI</i> meet Γ at <i>P</i> , where <i>P</i> is inside $\triangle IBC$. Prove that the tangent to Γ at <i>P</i> , <i>KL</i> , <i>BI</i> are concurrent. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
- 5 6	day 2 Let <i>I</i> be the incenter of an acute triangle $\triangle ABC$, and let the incircle be Γ . Let the circumcircle of $\triangle IBC$ hit Γ at <i>D</i> , <i>E</i> , where <i>D</i> is closer to <i>B</i> and <i>E</i> is closer to <i>C</i> . Let $\Gamma \cap BE = K(\neq E), CD \cap BI = T$, and $CD \cap \Gamma = L(\neq D)$. Let the line passing <i>T</i> and perpendicular to <i>BI</i> meet Γ at <i>P</i> , where <i>P</i> is inside $\triangle IBC$. Prove that the tangent to Γ at <i>P</i> , <i>KL</i> , <i>BI</i> are concurrent. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that (i): For different reals $x, y, f(x) \neq f(y)$.
- 5 6	day 2 Let <i>I</i> be the incenter of an acute triangle $\triangle ABC$, and let the incircle be Γ . Let the circumcircle of $\triangle IBC$ hit Γ at <i>D</i> , <i>E</i> , where <i>D</i> is closer to <i>B</i> and <i>E</i> is closer to <i>C</i> . Let $\Gamma \cap BE = K(\neq E), CD \cap BI = T$, and $CD \cap \Gamma = L(\neq D)$. Let the line passing <i>T</i> and perpendicular to <i>BI</i> meet Γ at <i>P</i> , where <i>P</i> is inside $\triangle IBC$. Prove that the tangent to Γ at <i>P</i> , <i>KL</i> , <i>BI</i> are concurrent. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that (i): For different reals $x, y, f(x) \neq f(y)$. (ii): For all reals $x, y, f(x + f(f(-y))) = f(x) + f(f(y))$
- 5 6 7	day 2 Let <i>I</i> be the incenter of an acute triangle $\triangle ABC$, and let the incircle be Γ . Let the circumcircle of $\triangle IBC$ hit Γ at <i>D</i> , <i>E</i> , where <i>D</i> is closer to <i>B</i> and <i>E</i> is closer to <i>C</i> . Let $\Gamma \cap BE = K(\neq E)$, $CD \cap BI = T$, and $CD \cap \Gamma = L(\neq D)$. Let the line passing <i>T</i> and perpendicular to <i>BI</i> meet Γ at <i>P</i> , where <i>P</i> is inside $\triangle IBC$. Prove that the tangent to Γ at <i>P</i> , <i>KL</i> , <i>BI</i> are concurrent. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that (i): For different reals $x, y, f(x) \neq f(y)$. (ii): For all reals $x, y, f(x + f(f(-y))) = f(x) + f(f(y))$ For a polynomial $f(x)$ with integer coefficients and degree no less than 1, prove that there are infinitely many primes <i>p</i> which satisfies the following.

AoPS Community

2015 Korea Junior Math Olympiad

A positive integer n is given. If there exist sets F₁, F₂, ... F_m satisfying the following, prove that m ≤ n.
(For sets A, B, |A| is the number of elements in A. A – B is the set of elements that are in A but not B)
(i): For all 1 ≤ i ≤ m, F_i ⊆ {1, 2, ... n}
(ii): |F₁| ≤ |F₂| ≤ ... ≤ |F_m|

(iii): For all $1 \le i < j \le m$, $|F_i - F_j| = 1$.

Act of Problem Solving is an ACS WASC Accredited School.