AoPS Community

KJMO 2015

www.artofproblemsolving.com/community/c868180
by parmenides 51 , rkm0959

- \quad day 1

1 In an acute, scalene triangle $\triangle A B C$, let O be the circumcenter. Let M be the midpoint of $A C$. Let the perpendicular from A to $B C$ be D. Let the circumcircle of $\triangle O A M$ hit $D M$ at $P(\neq M)$. Prove that B, O, P are colinear.

2 For a positive integer m, prove that the number of pairs of positive integers (x, y) which satisfies the following two conditions is even or 0 .
(i): $x^{2}-3 y^{2}+2=16 m$
(ii): $2 y \leq x-1$

3 For all nonnegative integer i, there are seven cards with 2^{i} written on it.
How many ways are there to select the cards so that the numbers add up to n ?
4 Reals a, b, c, x, y satisfy $a^{2}+b^{2}+c^{2}=x^{2}+y^{2}=1$. Find the maximum value of

$$
(a x+b y)^{2}+(b x+c y)^{2}
$$

- \quad day 2

5 Let I be the incenter of an acute triangle $\triangle A B C$, and let the incircle be Γ.
Let the circumcircle of $\triangle I B C$ hit Γ at D, E, where D is closer to B and E is closer to C.
Let $\Gamma \cap B E=K(\neq E), C D \cap B I=T$, and $C D \cap \Gamma=L(\neq D)$.
Let the line passing T and perpendicular to $B I$ meet Γ at P, where P is inside $\triangle I B C$.
Prove that the tangent to Γ at $P, K L, B I$ are concurrent.
$6 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i): For different reals $x, y, f(x) \neq f(y)$.
(ii): For all reals $x, y, f(x+f(f(-y)))=f(x)+f(f(y))$

7 For a polynomial $f(x)$ with integer coefficients and degree no less than 1 , prove that there are infinitely many primes p which satisfies the following.

There exists an integer n such that $f(n) \neq 0$ and $|f(n)|$ is a multiple of p.

8 A positive integer n is given. If there exist sets $F_{1}, F_{2}, \cdots F_{m}$ satisfying the following, prove that $m \leq n$.
(For sets $A, B,|A|$ is the number of elements in A. $A-B$ is the set of elements that are in A but not B)
(i): For all $1 \leq i \leq m, F_{i} \subseteq\{1,2, \cdots n\}$
(ii): $\left|F_{1}\right| \leq\left|F_{2}\right| \leq \cdots \leq\left|F_{m}\right|$
(iii): For all $1 \leq i<j \leq m,\left|F_{i}-F_{j}\right|=1$.

