AoPS Community

KJMO 2016

www.artofproblemsolving.com/community/c868533
by parmenides51, khyeon, rkm0959, Starrysky

- \quad day 1

1 positive reals a_{1}, a_{2}, \ldots satisfying
(i) $a_{n+1}=a_{1}^{2} \cdot a_{2}^{2} \cdot \ldots \cdot a_{n}^{2}-3$ (all positive integers n)
(ii) $\frac{1}{2}\left(a_{1}+\sqrt{a_{2}-1}\right)$ is positive integer.
prove that $\frac{1}{2}\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}+\sqrt{a_{n+1}-1}\right)$ is positive integer
2 A non-isosceles triangle $\triangle A B C$ has its incircle tangent to $B C, C A, A B$ at points D, E, F. Let the incenter be I. Say $A D$ hits the incircle again at G, at let the tangent to the incircle at G hit $A C$ at H. Let $I H \cap A D=K$, and let the foot of the perpendicular from I to $A D$ be L.

Prove that $I E \cdot I K=I C \cdot I L$.
$3 n$ players participated in a competition. Any two players have played exactly one game, and there was no tie game. For a set of $k(\leq n)$ players, if it is able to line the players up so that each player won every player at the back, we call the set ranked. For each player who participated in the competition, the set of players who lost to the player is ranked. Prove that the whole set of players can be split into three or less ranked sets.

4 find all positive integer n, satisfying

$$
\frac{n(n+2016)(n+2 \cdot 2016)(n+3 \cdot 2016) \ldots(n+2015 \cdot 2016)}{1 \cdot 2 \cdot 3 \cdot \ldots . .2016}
$$

is positive integer.

- \quad day 2
$5 \quad n \in \mathbb{N}^{+}$
Prove that the following equation can be expressed as a polynomial about n.

$$
[2 \sqrt{1}]+[2 \sqrt{2}]+[2 \sqrt{3}]+\ldots+\left[2 \sqrt{n^{2}}\right]
$$

6 circle O_{1} is tangent to $A C, B C$ (side of triangle $A B C$) at point D, E. circle O_{2} include O_{1}, is tangent to $B C, A B$ (side of triangle $A B C$) at point E, F
The tangent of O_{2} at $P\left(D E \cap O_{2}, P \neq E\right)$ meets $A B$ at Q.
A line passing through O_{1} (center of O_{1}) and parallel to $\mathrm{BO}_{2}\left(O_{2}\right.$ is also center of $\left.O_{2}\right)$ meets $B C$
at $G, E Q \cap A C=K, K G \cap E F=L, E O_{2}$ meets circle O_{2} at $N(\neq E), L O_{2} \cap F N=M$.
IF N is a middle point of $F M$, prove that $B G=2 E G$
7 positive integers $a_{1}, a_{2}, \ldots, a_{9}$ satisfying $a_{1}+a_{2}+\ldots+a_{9}=90$
find maximum of

$$
\frac{1^{a_{1}} \cdot 2^{a_{2}} \cdot \ldots \cdot 9^{a_{9}}}{a_{1}!\cdot a_{2}!\cdot \ldots \cdot a_{9}!}
$$

I was really shocked because there are no inequality problems at KJMO and the test difficulty even more lower...

8 One moving point in the coordinate plane can move right or up one position. N is a number of all paths : paths that moving point starts from $(0,0)$, without passing $(1,0),(2,1), \ldots,(n, n-1)$ and moves $2 n$ times to $(n, n) . a_{k}$ is a number of special paths: paths include in N, but k th moves to the right, $k+1$ th moves to the up.
find

$$
\frac{1}{N}\left(a_{1}+a_{2}+\ldots+a_{2 n-1}\right)
$$

