AoPS Community

KJMO 2017

www.artofproblemsolving.com/community/c869280
by parmenides51, Starrysky, rkm0959, enneper

- \quad day 1

1 Find all positive integer n and nonnegative integer $a_{1}, a_{2}, \ldots, a_{n}$ satisfying:
i divides exactly a_{i} numbers among $a_{1}, a_{2}, \ldots, a_{n}$, for each $i=1,2, \ldots, n$.
(0 is divisible by all integers.)
2 Let there be a scalene triangle $A B C$, and its incircle hits $B C, C A, A B$ at D, E, F. The perpendicular bisector of $B C$ meets the circumcircle of $A B C$ at P, Q, where P is on the same side with A with respect to $B C$. Let the line parallel to $A Q$ and passing through D meet $E F$ at R. Prove that the intersection between $E F$ and $P Q$ lies on the circumcircle of $B C R$.

3 Find all $n>1$ and integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying the following three conditions:
(i) $2<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
(ii) $a_{1}, a_{2}, \ldots, a_{n}$ are divisors of $15^{25}+1$.
(iii) $2-\frac{2}{15^{25}+1}=\left(1-\frac{2}{a_{1}}\right)+\left(1-\frac{2}{a_{2}}\right)+\cdots+\left(1-\frac{2}{a_{n}}\right)$

4
4. Let $a \geq b \geq c \geq d>0$. Show that

$$
\frac{b^{3}}{a}+\frac{c^{3}}{b}+\frac{d^{3}}{c}+\frac{a^{3}}{d}+3(a b+b c+c d+d a) \geq 4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
$$

Other problems (in Korean) are also available at https://www.facebook.com/KoreanMathOlympiad

- day 2

$5 \quad$ Given an integer $n \geq 2$, show that there exist two integers a, b which satisfy the following.
For all integer $m, m^{3}+a m+b$ is not a multiple of n.
6 Let triangle $A B C$ be an acute scalene triangle, and denote D, E, F by the midpoints of $B C, C A, A B$, respectively. Let the circumcircle of $D E F$ be O_{1}, and its center be N. Let the circumcircle of $B C N$ be $O_{2} . O_{1}$ and O_{2} meet at two points $P, Q . O_{2}$ meets $A B$ at point $K(\neq B)$ and meets $A C$ at point $L(\neq C)$. Show that the three lines $E F, P Q, K L$ are concurrent.

7 Prove that there is no function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ satisfying:
$f\left(x+y^{2}\right) \geq f(x)+y$ for all two nonnegative real numbers x, y.

8 For a positive integer n, there is a school with n people. For a set X of students in this school, if any two students in X know each other, we call X well-formed. If the maximum number of students in a well-formed set is k, show that the maximum number of well-formed sets is not greater than $3^{(n+k) / 3}$.

Here, an empty set and a set with one student is regarded as well-formed as well.

