Art of Problem Solving

AoPS Community

Peru IMO TST 2010

www.artofproblemsolving.com/community/c875036
by parmenides51, socrates, April

- day 1

1 Let $A B C$ be an acute-angled triangle and F a point in its interior such that

$$
\angle A F B=\angle B F C=\angle C F A=120^{\circ} .
$$

Prove that the Euler lines of the triangles $A F B, B F C$ and $C F A$ are concurrent.
2 A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the number $P(1)$, $P(2), \ldots, P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

Proposed by Jorge Tipe, Peru
3 Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Proposed by Gerhard Woeginger, Netherlands

- day 2

4 Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{1+a b}{a+b}+\frac{1+b c}{b+c}+\frac{1+c a}{c+a} \geq 5
$$

$5 \quad$ Let \mathbb{N} be the set of positive integers. For each subset \mathcal{X} of \mathbb{N} we define the set $\Delta(\mathcal{X})$ as the set of all numbers $|m-n|$, where m and n are elements of \mathcal{X}, ie:

$$
\Delta(\mathcal{X})=\{|m-n| \mid m, n \in \mathcal{X}\}
$$

Let \mathcal{A} and \mathcal{B} be two infinite, disjoint sets whose union is \mathbb{N}.
a) Prove that the set $\Delta(\mathcal{A}) \cap \Delta(\mathcal{B})$ has infinitely many elements.
b) Prove that there exists an infinite subset \mathcal{C} of \mathbb{N} such that $\Delta(\mathcal{C})$ is a subset of $\Delta(\mathcal{A}) \cap \Delta(\mathcal{B})$.

6 Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are circumcenters and points H_{1} and H_{2} are orthocenters of triangles $A B P$ and $C D P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the lines $H_{1} H_{2}$ are concurrent.

Proposed by Eugene Bilopitov, Ukraine

- \quad day 3

7 Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+3(a b+b c+c a) \geq \frac{11}{2} .
$$

8 Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G and H.
Proposed by David Monk, United Kingdom
9 Find all positive integers n such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying:

$$
a_{k+1}=\frac{a_{k}^{2}+1}{a_{k-1}+1}-1
$$

for every k with $2 \leq k \leq n-1$.
Proposed by North Korea

