AoPS Community

Peru IMO TST 2011

www.artofproblemsolving.com/community/c875037
by parmenides51, socrates, Amir Hossein, orl

- \quad day 1
$1 \quad$ Let \mathbb{Z}^{+}denote the set of positive integers. Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$that satisfy the following condition: for each positive integer n, there exists a positive integer k such that

$$
\sum_{i=1}^{k} f_{i}(n)=k n
$$

where $f_{1}(n)=f(n)$ and $f_{i+1}(n)=f\left(f_{i}(n)\right)$, for $i \geq 1$.
2 Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon. Point P inside this polygon is chosen so that its projections P_{1}, \ldots, P_{n} onto lines $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively lie on the sides of the polygon. Prove that for arbitrary points X_{1}, \ldots, X_{n} on sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively,

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}}\right\} \geq 1
$$

Proposed by Nairi Sedrakyan, Armenia
3 Let a, b be integers, and let $P(x)=a x^{3}+b x$. For any positive integer n we say that the pair (a, b) is n-good if $n \mid P(m)-P(k)$ implies $n \mid m-k$ for all integers m, k. We say that (a, b) is very good if (a, b) is n-good for infinitely many positive integers n.
-(a) Find a pair (a, b) which is 51-good, but not very good.
-(b) Show that all 2010-good pairs are very good.
Proposed by Okan Tekman, Turkey

- day 2

4 Let $A B C$ be an acute triangle, and $A A_{1}, B B_{1}$, and $C C_{1}$ its altitudes. Let A_{2} be a point on segment $A A_{1}$ such that $\angle B A_{2} C=90^{\circ}$. The points B_{2} and C_{2} are defined similarly. Let A_{3} be the intersection point of segments $B_{2} C$ and $B C_{2}$. The points B_{3} and C_{3} are defined similarly. Prove that the segments $A_{2} A_{3}, B_{2} B_{3}$, and $C_{2} C_{3}$ are concurrent.
$5 \quad$ On some planet, there are 2^{N} countries $(N \geq 4)$. Each country has a flag N units wide and one unit high composed of N fields of size 1×1, each field being either yellow or blue. No two countries have the same flag. We say that a set of N flags is diverse if these flags can be arranged into an $N \times N$ square so that all N fields on its main diagonal will have the same
color. Determine the smallest positive integer M such that among any M distinct flags, there exist N flags forming a diverse set.
Proposed by Toni Kokan, Croatia
6 Let $a_{1}, a_{2}, \cdots, a_{n}$ be real numbers, with $n \geq 3$, such that $a_{1}+a_{2}+\cdots+a_{n}=0$ and

$$
2 a_{k} \leq a_{k-1}+a_{k+1} \text { for } k=2,3, \cdots, n-1 .
$$

Find the least number $\lambda(n)$, such that for all $k \in\{1,2, \cdots, n\}$ it is satisfied that $\left|a_{k}\right| \leq \lambda(n)$. $\max \left\{\left|a_{1}\right|,\left|a_{n}\right|\right\}$.

