Art of Problem Solving

AoPS Community

Peru IMO TST 2012

www.artofproblemsolving.com/community/c875038
by parmenides51, socrates, Amir Hossein, orl

- \quad day 1

1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
f(f(x))=\frac{x^{2}-x}{2} \cdot f(x)+2-x
$$

for all $x \in \mathbb{R}$. Find all possible values of $f(2)$.
2 Let a, b, c be the lengths of the sides of a triangle, and h_{a}, h_{b}, h_{c} the lengths of the heights corresponding to the sides a, b, c, respectively. If $t \geq \frac{1}{2}$ is a real number, show that there is a triangle with sidelengths

$$
t \cdot a+h_{a}, t \cdot b+h_{b}, t \cdot c+h_{c} .
$$

3 Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2 k$ students, for which the first half contains the same number of girls as the second half.
Proposed by Gerhard Wginger, Austria

- \quad day 2

4 An infinite triangular lattice is given, such that the distance between any two adjacent points is always equal to 1 .
Points A, B, and C are chosen on the lattice such that they are the vertices of an equilateral triangle of side length L, and the sides of $A B C$ contain no points from the lattice. Prove that, inside triangle $A B C$, there are exactly $\frac{L^{2}-1}{2}$ points from the lattice.

5 Let $A B C D$ be a parallelogram such that $\angle A B C>90^{\circ}$, and \mathcal{L} the line perpendicular to $B C$ that passes through B. Suppose that the segment $C D$ does not intersect \mathcal{L}. Of all the circumferences that pass through C and D, there is one that is tangent to \mathcal{L} at P, and there is another one that is tangent to \mathcal{L} at Q (where $P \neq Q$). If M is the midpoint of $A B$, prove that $\angle P M D=\angle Q M D$.

6 Let p be an odd prime number. For every integer a, define the number $S_{a}=\sum_{j=1}^{p-1} \frac{a^{j}}{j}$. Let $m, n \in$ \mathbb{Z}, such that $S_{3}+S_{4}-3 S_{2}=\frac{m}{n}$. Prove that p divides m.
Proposed by Romeo Metrovi, Montenegro

