Art of Problem Solving

AoPS Community

Peru IMO TST 2013

www.artofproblemsolving.com/community/c875044
by parmenides51, lyukhson, socrates, mathmdmb

- day 1

1 Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or ($x-1, x$). Prove that she can perform only finitely many such iterations.

Proposed by Warut Suksompong, Thailand
2 Let $a \geq 3$ be a real number, and P a polynomial of degree n and having real coefficients. Prove that at least one of the following numbers is greater than or equal to 1 :

$$
\left|a^{0}-P(0)\right|,\left|a^{1}-P(1)\right|,\left|a^{2}-P(2)\right|, \cdots,\left|a^{n+1}-P(n+1)\right| .
$$

3 A point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the inscribed circumference of triangle $C P D$ and I the centre of ω. It is known that ω is tangent to the inscribed circumferences of triangles $A P D$ and $B P C$ at points K and L respectively. Let E be the point where the lines $A C$ and $B D$ intersect, and F the point where the lines $A K$ and $B L$ intersect. Prove that the points E, I, F are collinear.

- \quad day 2

4 Let A be a point outside of a circumference ω. Through A, two lines are drawn that intersect ω, the first one cuts ω at B and C, while the other one cuts ω at D and E (D is between A and E). The line that passes through D and is parallel to $B C$ intersects ω at point $F \neq D$, and the line $A F$ intersects ω at $T \neq F$. Let M be the intersection point of lines $B C$ and $E T, N$ the point symmetrical to A with respect to M, and K be the midpoint of $B C$. Prove that the quadrilateral $D E K N$ is cyclic.

5 Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.
$6 \quad$ Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules:
(a) On every move of his B passes 1 coin from every box to an adjacent box.
(b) On every move of hers A chooses several coins that were not involved in B 's previous move
and are in different boxes. She passes every coin to an adjacent box.
Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

