

AoPS Community

2013 Peru IMO TST

Peru IMO TST 2013

www.artofproblemsolving.com/community/c875044 by parmenides51, lyukhson, socrates, mathmdmb

-	day 1
---	-------

1 Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either (y + 1, x) or (x - 1, x). Prove that she can perform only finitely many such iterations.

Proposed by Warut Suksompong, Thailand

2 Let $a \ge 3$ be a real number, and P a polynomial of degree n and having real coefficients. Prove that at least one of the following numbers is greater than or equal to 1:

 $|a^{0} - P(0)|, |a^{1} - P(1)|, |a^{2} - P(2)|, \cdots, |a^{n+1} - P(n+1)|.$

3 A point *P* lies on side *AB* of a convex quadrilateral *ABCD*. Let ω be the inscribed circumference of triangle *CPD* and *I* the centre of ω . It is known that ω is tangent to the inscribed circumferences of triangles *APD* and *BPC* at points *K* and *L* respectively. Let *E* be the point where the lines *AC* and *BD* intersect, and *F* the point where the lines *AK* and *BL* intersect. Prove that the points *E*, *I*, *F* are collinear.

- **4** Let *A* be a point outside of a circumference ω . Through *A*, two lines are drawn that intersect ω , the first one cuts ω at *B* and *C*, while the other one cuts ω at *D* and *E* (*D* is between *A* and *E*). The line that passes through *D* and is parallel to *BC* intersects ω at point $F \neq D$, and the line *AF* intersects ω at $T \neq F$. Let *M* be the intersection point of lines *BC* and *ET*, *N* the point symmetrical to *A* with respect to *M*, and *K* be the midpoint of *BC*. Prove that the quadrilateral *DEKN* is cyclic.
- **5** Determine all integers $m \ge 2$ such that every n with $\frac{m}{3} \le n \le \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2n}$.
- 6 Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, ... by the following rules:
 (a) On every move of his B passes 1 coin from every box to an adjacent box.
 (b) On every move of hers A chooses several coins that were *not* involved in B's previous move

[–] day 2

and are in different boxes. She passes every coin to an adjacent box. Player *A*'s goal is to ensure at least 1 coin in each box after every move of hers, regardless of how *B* plays and how many moves are made. Find the least *N* that enables her to succeed.

Act of Problem Solving is an ACS WASC Accredited School.