Art of Problem Solving

AoPS Community

Peru IMO TST 2016

www.artofproblemsolving.com/community/c875065
by parmenides51, Mathsy123, mathisreal, Problem_Penetrator, ABCDE, CantonMathGuy, va2010

- pre-selection

1 The real problem was:

The positive real numbers a, b, c with $a b+b c+c a=1$ Show that: $\sqrt{a+\frac{1}{a}}+\sqrt{b+\frac{1}{b}}+\sqrt{c+\frac{1}{c}}$ $2(\sqrt{a}+\sqrt{b}+\sqrt{c})$

2 Determine how many 100-positive integer sequences satisfy the two conditions following:

- At least one term of the sequence is equal to 4 or 5 .
- Any two adjacent terms differ as a maximum in 2.

3 Let $A B C D$ a convex quadrilateral such that $A D$ and $B C$ are not parallel. Let M and N the midpoints of $A D$ and $B C$ respectively. The segment $M N$ intersects $A C$ and $B D$ in K and L respectively, Show that at least one point of the intersections of the circumcircles of AKM and $B N L$ is in the line $A B$.
$4 \quad$ Let N be the set of positive integers.
Find all the functions $f: N \rightarrow N$ with $f(1)=2$ and such that $\max \{f(m)+f(n), m+n\}$ divides $\min \{2 m+2 n, f(m+n)+1\}$ for all m, n positive integers

- day 1

$5 \quad$ Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=$ AH.
$6 \quad$ Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$.
$7 \quad$ Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

- day 2

AoPS Community

8 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
$9 \quad$ Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called $[\mathrm{i}] k$ - $\operatorname{good}[/ \mathrm{i}]$ if $\operatorname{gcd}(f(m)+n, f(n)+m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.

Proposed by James Rickards, Canada
10 Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B$, $A C$, and $B C$ respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.
Proposed by El Salvador

- \quad day 3

11 Let $n>2$ be an integer. A child has n^{2} candies, which are distributed in n boxes. An operation consists in choosing two boxes that together contain an even number of candies and redistribute the candy from those boxes so that both contain the same amount of candy. Determine all the values of n for which the child, after some operations, can get each box containing n candies, no matter which the initial distribution of candies is.

12 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.
$13 \quad$ Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$. For any $m, n \in$ $\mathbb{Z}_{>0}$ we write $f^{n}(m)=\underbrace{f(f(\ldots f}_{n}(m) \ldots))$. Suppose that f has the following two properties:
(i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^{n}(m)-m}{n} \in \mathbb{Z}_{>0}$;
(ii) The set $\mathbb{Z}_{>0} \backslash\left\{f(n) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite.

Prove that the sequence $f(1)-1, f(2)-2, f(3)-3, \ldots$ is periodic.
Proposed by Ang Jie Jun, Singapore

- \quad day 4

14 Determine all positive integers M such that the sequence $a_{0}, a_{1}, a_{2}, \cdots$ defined by

$$
a_{0}=M+\frac{1}{2} \quad \text { and } \quad a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor \quad \text { for } k=0,1,2, \cdots
$$

contains at least one integer term.
15 Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.
The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

Proposed by Finland
16 Find all pairs (m, n) of positive integers that have the following property:
For every polynomial $P(x)$ of real coefficients and degree m, there exists a polynomial $Q(x)$ of real coefficients and degree n such that $Q(P(x))$ is divisible by $Q(x)$.

