Art of Problem Solving

AoPS Community

2019 Thailand Mathematical Olympiad

www.artofproblemsolving.com/community/c879638
by MarkBcc168, parmenides51

- Day 1

1 Let $A B C D E$ be a convex pentagon with $\angle A E B=\angle B D C=90^{\circ}$ and line $A C$ bisects $\angle B A E$ and $\angle D C B$ internally. The circumcircle of $A B E$ intersects line $A C$ again at P.
(a) Show that P is the circumcenter of $B D E$.
(b) Show that A, C, D, E are concyclic.

2 Let a, b be two different positive integers. Suppose that a, b are relatively prime. Prove that $\frac{2 a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}$ is not an integer.
$3 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f\left(x+y f(x)+y^{2}\right)=f(x)+2 y$ for every $x, y \in \mathbb{R}^{+}$.
4 A rabbit initially stands at the position 0 , and repeatedly jumps on the real line. In each jump, the rabbit can jump to any position corresponds to an integer but it cannot stand still. Let $N(a)$ be the number of ways to jump with a total distance of 2019 and stop at the position a. Determine all integers a such that $N(a)$ is odd.

5 Let a, b, c be positive reals such that $a b c=1$. Prove the inequality

$$
\frac{4 a-1}{(2 b+1)^{2}}+\frac{4 b-1}{(2 c+1)^{2}}+\frac{4 c-1}{(2 a+1)^{2}} \geqslant 1 .
$$

- Day 2

$6 \quad$ Determine all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $x f(y)+y f(x) \leqslant x y$ for all $x, y \in \mathbb{R}$.
7 Let $A=\{-2562,-2561, \ldots, 2561,2562\}$. Prove that for any bijection (1-1, onto function) $f: A \rightarrow$ A,

$$
\sum_{k=1}^{2562}|f(k)-f(-k)| \text { is maximized if and only if } f(k) f(-k)<0 \text { for any } k=1,2, \ldots, 2562 .
$$

$8 \quad$ Let $A B C$ be a triangle such that $A B \neq A C$ and ω be the circumcircle of this triangle.
Let I be the center of the inscribed circle of $A B C$ which touches $B C$ at D.

Let the circle with diameter $A I$ meets ω again at K.
If the line $A I$ intersects ω again at M, show that K, D, M are collinear.
9 A chaisri figure is a triangle which the three vertices are vertices of a regular 2019-gon. Two different chaisri figure may be formed by different regular 2019-gon.
A thubkaew figure is a convex polygon which can be dissected into multiple chaisri figure where each vertex of a dissected chaisri figure does not necessarily lie on the border of the convex polygon.
Determine the maximum number of vertices that a thubkaew figure may have.
10 Prove that there are infinitely many positive odd integer n such that $n!+1$ is composite number.

