AoPS Community

Turkey Junior National Olympiad 2018

www.artofproblemsolving.com/community/c881270
by electrovector

1 Let $s(n)$ be the number of positive integer divisors of n.
Find the all positive values of k that is providing $k=s(a)=s(b)=s(2 a+3 b)$.
2 We are placing rooks on a $n \cdot n$ chess table that providing this condition:
Every two rooks will threaten an empty square at least.
What is the most number of rooks?
3 In an acute $A B C$ triangle which has a circumcircle center called O, there is a line that perpendiculars to $A O$ line cuts $[A B]$ and $[A C]$ respectively on D and E points. There is a point called K that is different from $A O$ and $B C$'s junction point on $[B C]$. $A K$ line cuts the circumcircle of $A D E$ on L that is different from $A . M$ is the symmetry point of A according to $D E$ line. Prove that K, L, M, O are circular.

4 For all x, y, z positive real numbers, find the all c positive real numbers that providing

$$
\frac{x^{3} y+y^{3} z+z^{3} x}{x+y+z}+\frac{4 c}{x y z} \geq 2 c+2
$$

