

AoPS Community

Regional Competition For Advanced Students 2010

www.artofproblemsolving.com/community/c881334 by FelixD

1 Let $0 \le a$, $b \le 1$ be real numbers. Prove the following inequality:

 $\sqrt{a^3b^3} + \sqrt{(1-a^2)(1-ab)(1-b^2)} \leq 1.$

(41th Austrian Mathematical Olympiad, regional competition, problem 1)

2 Solve the following in equation in \mathbb{R}^3 :

$$4x^4 - x^2(4y^4 + 4z^4 - 1) - 2xyz + y^8 + 2y^4z^4 + y^2z^2 + z^8 = 0.$$

3 Let $\triangle ABC$ be a triangle and let D be a point on side \overline{BC} . Let U and V be the circumcenters of triangles $\triangle ABD$ and $\triangle ADC$, respectively. Show, that $\triangle ABC$ and $\triangle AUV$ are similar.

(41th Austrian Mathematical Olympiad, regional competition, problem 3)

4 Let $(b_n)_{n\geq 0} = \sum_{k=0}^{n} (a_0 + kd)$ for positive integers a_0 and d. We consider all such sequences containing an element b_i which equals 2010. Determine the greatest possible value of i and for this value the integers a_0 and d.

(41th Austrian Mathematical Olympiad, regional competition, problem 4)

AoPS Online AoPS Academy AoPS & AoPS & Academy