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1 Let 0 < a, b < 1 be real numbers. Prove the following inequality:

Va3h3 + /(1 —a2)(1 —ab)(1 —b2) < 1.

(47th Austrian Mathematical Olympiad, regional competition, problem 1)

2 Solve the following in equation in R3:

4ot — x2(4y4 +4z% — 1) — 2zyz + 4 2ytt 4222 428 =0

3 Let AABC be atriangle and let D be a point on side BC. Let U and V' be the circumcenters of
triangles AABD and AADC, respectively. Show, that AABC and AAUYV are similar.

(47th Austrian Mathematical Olympiad, regional competition, problem 3)

4 Let (bn)n>0 = > p_o(ao + kd) for positive integers ay and d. We consider all such sequences
containing an element b; which equals 2010. Determine the greatest possible value of i and for
this value the integers ay and d.

(47th Austrian Mathematical Olympiad, regional competition, problem 4)
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