Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 22018

www.artofproblemsolving.com/community/c881349
by parmenides51

- Day 1

1 Let $a \neq 0$ be a real number.
Find all functions $f: R_{>0} \rightarrow R_{>0}$ with

$$
f(f(x)+y)=a x+\frac{1}{f\left(\frac{1}{y}\right)}
$$

for all $x, y \in R_{>0}$.
(Proposed by Walther Janous)
2 Let A, B, C and D be four different points lying on a common circle in this order. Assume that the line segment $A B$ is the (only) longest side of the inscribed quadrilateral $A B C D$. Prove that the inequality $A B+B D>A C+C D$ holds.
(Proposed by Karl Czakler)
3 There are n children in a room. Each child has at least one piece of candy. In Round 1, Round 2, etc., additional pieces of candy are distributed among the children according to the following rule:
In Round k, each child whose number of pieces of candy is relatively prime to k receives an additional piece.
Show that after a sufficient number of rounds the children in the room have at most two different numbers of pieces of candy.
(Proposed by Theresia Eisenklbl)

- Day 2
$4 \quad$ Let $A B C$ be a triangle and P a point inside the triangle such that the centers M_{B} and M_{A} of the circumcircles k_{B} and k_{A} of triangles $A C P$ and $B C P$, respectively, lie outside the triangle $A B C$. In addition, we assume that the three points A, P and M_{A} are collinear as well as the three points B, P and M_{B}. The line through P parallel to side $A B$ intersects circles k_{A} and k_{B} in points D and E, respectively, where $D, E \neq P$. Show that $D E=A C+B C$.
(Proposed by Walther Janous)

5 On a circle 2018 points are marked. Each of these points is labeled with an integer. Let each number be larger than the sum of the preceding two numbers in clockwise order. Determine the maximal number of positive integers that can occur in such a configuration of 2018 integers.

(Proposed by Walther Janous)

6 Determine all digits z such that for each integer $k \geq 1$ there exists an integer $n \geq 1$ with the property that the decimal representation of n^{9} ends with at least k digits z.
(Proposed by Walther Janous)

