AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2019

www.artofproblemsolving.com/community/c888160
by byk7

1 Find all triplets $(x, y, z) \in \mathbb{R}^{3}$ such that

$$
\begin{aligned}
& x^{2}-y z=|y-z|+1, \\
& y^{2}-z x=|z-x|+1, \\
& z^{2}-x y=|x-y|+1 .
\end{aligned}
$$

2 Let be $A B C D$ a rectangle with $|A B|=a \geq b=|B C|$. Find points P, Q on the line $B D$ such that $|A P|=|P Q|=|Q C|$. Discuss the solvability with respect to the lengths a, b.

3 Let a, b, c, n be positive integers such that the following conditions hold
(i) numbers $a, b, c, a+b+c$ are pairwise coprime,
(ii) number $(a+b)(b+c)(c+a)(a+b+c)(a b+b c+c a)$ is a perfect n-th power.

Prove, that the product $a b c$ can be expressed as a difference of two perfect n-th powers.
4 Let be $A B C$ an acute-angled triangle. Consider point P lying on the opposite ray to the ray $B C$ such that $|A B|=|B P|$. Similarly, consider point Q on the opposite ray to the ray $C B$ such that $|A C|=|C Q|$. Denote J the excenter of $A B C$ with respect to A and D, E tangent points of this excircle with the lines $A B$ and $A C$, respectively. Suppose that the opposite rays to $D P$ and $E Q$ intersect in $F \neq J$. Prove that $A F \perp F J$.

5 Prove that there are infinitely many integers which cannot be expressed as $2^{a}+3^{b}-5^{c}$ for non-negative integers a, b, c.

6 Assume we can fill a table $n \times n$ with all numbers $1,2, \ldots, n^{2}-1, n^{2}$ in such way that arithmetic means of numbers in every row and every column is an integer. Determine all such positive integers n.

