Art of Problem Solving

APMO 2019

www.artofproblemsolving.com/community/c890289
by MarkBcc168, IndoMathXdZ
$1 \quad$ Let \mathbb{Z}^{+}be the set of positive integers. Determine all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $a^{2}+$ $f(a) f(b)$ is divisible by $f(a)+b$ for all positive integers a, b.

2 Let m be a fixed positive integer. The infinite sequence $\left\{a_{n}\right\}_{n \geq 1}$ is defined in the following way: a_{1} is a positive integer, and for every integer $n \geq 1$ we have

$$
a_{n+1}= \begin{cases}a_{n}^{2}+2^{m} & \text { if } a_{n}<2^{m} \\ a_{n} / 2 & \text { if } a_{n} \geq 2^{m}\end{cases}
$$

For each m, determine all possible values of a_{1} such that every term in the sequence is an integer.

3 Let $A B C$ be a scalene triangle with circumcircle Γ. Let M be the midpoint of $B C$. A variable point P is selected in the line segment $A M$. The circumcircles of triangles $B P M$ and $C P M$ intersect Γ again at points D and E, respectively. The lines $D P$ and $E P$ intersect (a second time) the circumcircles to triangles $C P M$ and $B P M$ at X and Y, respectively. Prove that as P varies, the circumcircle of $\triangle A X Y$ passes through a fixed point T distinct from A.

4 Consider a 2018×2019 board with integers in each unit square. Two unit squares are said to be neighbours if they share a common edge. In each turn, you choose some unit squares. Then for each chosen unit square the average of all its neighbours is calculated. Finally, after these calculations are done, the number in each chosen unit square is replaced by the corresponding average.
Is it always possible to make the numbers in all squares become the same after finitely many turns?

5 Determine all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=f(f(x))+f\left(y^{2}\right)+2 f(x y)
$$

for all real numbers x and y.

