AoPS Community

www.artofproblemsolving.com/community/c89390
by ComplexPhi

- Day 1

1 Let $A B C$ be a triangle, let O be its circumcenter, let A^{\prime} be the orthogonal projection of A on the line $B C$, and let X be a point on the open ray $A A^{\prime}$ emanating from A. The internal bisectrix of the angle $B A C$ meets the circumcircle of $A B C$ again at D. Let M be the midpoint of the segment $D X$. The line through O and parallel to the line $A D$ meets the line $D X$ at N. Prove that the angles $B A M$ and $C A N$ are equal.

2 Let $A B C$ be a triangle, and let r denote its inradius. Let R_{A} denote the radius of the circle internally tangent at A to the circle $A B C$ and tangent to the line $B C$; the radii R_{B} and R_{C} are defined similarly. Show that $\frac{1}{R_{A}}+\frac{1}{R_{B}}+\frac{1}{R_{C}} \leq \frac{2}{r}$.

3 A Pythagorean triple is a solution of the equation $x^{2}+y^{2}=z^{2}$ in positive integers such that $x<y$. Given any non-negative integer n, show that some positive integer appears in precisely n distinct Pythagorean triples.

4 Let k be a positive integer congruent to 1 modulo 4 which is not a perfect square and let $a=$ $\frac{1+\sqrt{k}}{2}$.
Show that $\left\{\left\lfloor a^{2} n\right\rfloor-\lfloor a\lfloor a n\rfloor\rfloor: n \in \mathbb{N}_{>0}\right\}=\{1,2, \ldots,\lfloor a\rfloor\}$.
5 Given an integer $N \geq 4$, determine the largest value the sum

$$
\sum_{i=1}^{\left\lfloor\frac{k}{2}\right\rfloor+1}\left(\left\lfloor\frac{n_{i}}{2}\right\rfloor+1\right)
$$

may achieve, where k, n_{1}, \ldots, n_{k} run through the integers subject to $k \geq 3, n_{1} \geq \ldots \geq n_{k} \geq 1$ and $n_{1}+\ldots+n_{k}=N$.

- Day 2

1 Let a be an integer and n a positive integer. Show that the sum :

$$
\sum_{k=1}^{n} a^{(k, n)}
$$

is divisible by n, where (x, y) is the greatest common divisor of the numbers x and y.

AoPS Community

2015 Romania Team Selection Tests

2 Let $A B C$ be a triangle. Let A^{\prime} be the center of the circle through the midpoint of the side $B C$ and the orthogonal projections of B and C on the lines of support of the internal bisectrices of the angles $A C B$ and $A B C$, respectively ; the points B^{\prime} and C^{\prime} are defined similarly. Prove that the nine-point circle of the triangle $A B C$ and the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ are concentric.

3 Given a positive real number t, determine the sets A of real numbers containing t, for which there exists a set B of real numbers depending on $A,|B| \geq 4$, such that the elements of the set $A B=\{a b \mid a \in A, b \in B\}$ form a finite arithmetic progression .
$4 \quad$ Consider the integral lattice $\mathbb{Z}^{n}, n \geq 2$, in the Euclidean n-space. Define a line in \mathbb{Z}^{n} to be a set of the form $a_{1} \times \cdots \times a_{k-1} \times \mathbb{Z} \times a_{k+1} \times \cdots \times a_{n}$ where k is an integer in the range $1,2, \ldots, n$, and the a_{i} are arbitrary integers. A subset A of \mathbb{Z}^{n} is called admissible if it is non-empty, finite, and every line in \mathbb{Z}^{n} which intersects A contains at least two points from A. A subset N of \mathbb{Z}^{n} is called null if it is non-empty, and every line in \mathbb{Z}^{n} intersects N in an even number of points (possibly zero).
(a) Prove that every admissible set in \mathbb{Z}^{2} contains a null set.
(b) Exhibit an admissible set in \mathbb{Z}^{3} no subset of which is a null set .

- Day 3

1 Two circles γ and γ^{\prime} cross one another at points A and B. The tangent to γ^{\prime} at A meets γ again at C, the tangent to γ at A meets γ^{\prime} again at C^{\prime}, and the line $C C^{\prime}$ separates the points A and B. Let Γ be the circle externally tangent to γ, externally tangent to γ^{\prime}, tangent to the line $C C^{\prime}$, and lying on the same side of $C C^{\prime}$ as B. Show that the circles γ and γ^{\prime} intercept equal segments on one of the tangents to Γ through A.

2 Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ be sequences of real numbers such that $a_{0}>\frac{1}{2}, a_{n+1} \geq a_{n}$ and $b_{n+1}=$ $a_{n}\left(b_{n}+b_{n+2}\right)$ for all non-negative integers n. Show that the sequence $\left(b_{n}\right)_{n \geq 0}$ is bounded.
$3 \quad$ If k and n are positive integers, and $k \leq n$, let $M(n, k)$ denote the least common multiple of the numbers $n, n-1, \ldots, n-k+1$. Let $f(n)$ be the largest positive integer $k \leq n$ such that $M(n, 1)<M(n, 2)<\ldots<M(n, k)$. Prove that :
(a) $f(n)<3 \sqrt{n}$ for all positive integers n.
(b) If N is a positive integer, then $f(n)>N$ for all but finitely many positive integers n.

4 Given two integers $h \geq 1$ and $p \geq 2$, determine the minimum number of pairs of opponents an $h p$-member parliament may have, if in every partition of the parliament into h houses of p member each, some house contains at least one pair of opponents.

- Day 4

1 Let $A B C$ and $A B D$ be coplanar triangles with equal perimeters. The lines of support of the internal bisectrices of the angles $C A D$ and $C B D$ meet at P. Show that the angles $A P C$ and
$B P D$ are congruent.
2 Given an integer $k \geq 2$, determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n-k+1, \ldots, n$, as n runs through the integers greater than or equal to k.
$3 \quad$ Let n be a positive integer. If σ is a permutation of the first n positive integers, let $S(\sigma)$ be the set of all distinct sums of the form $\sum_{i=k}^{l} \sigma(i)$ where $1 \leq k \leq l \leq n$.
(a) Exhibit a permutation σ of the first n positive integers such that $|S(\sigma)| \geq\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$.
(b) Show that $|S(\sigma)|>\frac{n \sqrt{n}}{4 \sqrt{2}}$ for all permutations σ of the first n positive integers.

- Day 5

1 Let $A B C$ be a triangle. Let P_{1} and P_{2} be points on the side $A B$ such that P_{2} lies on the segment $B P_{1}$ and $A P_{1}=B P_{2}$; similarly, let Q_{1} and Q_{2} be points on the side $B C$ such that Q_{2} lies on the segment $B Q_{1}$ and $B Q_{1}=C Q_{2}$. The segments $P_{1} Q_{2}$ and $P_{2} Q_{1}$ meet at R, and the circles $P_{1} P_{2} R$ and $Q_{1} Q_{2} R$ meet again at S, situated inside triangle $P_{1} Q_{1} R$. Finally, let M be the midpoint of the side $A C$. Prove that the angles $P_{1} R S$ and $Q_{1} R M$ are equal.

2 Let n be an integer greater than 1 , and let p be a prime divisor of n. A confederation consists of p states, each of which has exactly n airports. There are p air companies operating interstate flights only such that every two airports in different states are joined by a direct (two-way) flight operated by one of these companies. Determine the maximal integer N satisfying the following condition: In every such confederation it is possible to choose one of the p air companies and N of the $n p$ airports such that one may travel (not necessarily directly) from any one of the N chosen airports to any other such only by flights operated by the chosen air company.

3 Define a sequence of integers by $a_{0}=1$, and $a_{n}=\sum_{k=0}^{n-1}\binom{n}{k} a_{k}, n \geq 1$. Let m be a positive integer, let p be a prime, and let q and r be non-negative integers. Prove that :

$$
a_{p^{m} q+r} \equiv a_{p^{m-1} q+r} \quad\left(\bmod p^{m}\right)
$$

