

AoPS Community

2015 Romania Team Selection Tests

www.artofproblemsolving.com/community/c89390 by ComplexPhi

-	Day 1
1	Let ABC be a triangle, let O be its circumcenter, let A' be the orthogonal projection of A on the line BC , and let X be a point on the open ray AA' emanating from A . The internal bisectrix of the angle BAC meets the circumcircle of ABC again at D . Let M be the midpoint of the segment DX . The line through O and parallel to the line AD meets the line DX at N . Prove that the angles BAM and CAN are equal.
2	Let ABC be a triangle, and let r denote its inradius. Let R_A denote the radius of the circle internally tangent at A to the circle ABC and tangent to the line BC ; the radii R_B and R_C are defined similarly. Show that $\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leq \frac{2}{r}$.
3	A Pythagorean triple is a solution of the equation $x^2 + y^2 = z^2$ in positive integers such that $x < y$. Given any non-negative integer n , show that some positive integer appears in precisely n distinct Pythagorean triples.
4	Let k be a positive integer congruent to 1 modulo 4 which is not a perfect square and let $a = \frac{1+\sqrt{k}}{2}$. Show that $\{\lfloor a^2n \rfloor - \lfloor a \lfloor an \rfloor \rfloor : n \in \mathbb{N}_{>0}\} = \{1, 2, \dots, \lfloor a \rfloor\}.$
5	Given an integer $N \ge 4$, determine the largest value the sum
	$\sum_{i=1}^{\left\lfloor \frac{k}{2} \right\rfloor + 1} \left(\left\lfloor \frac{n_i}{2} \right\rfloor + 1 \right)$
	may achieve, where k, n_1, \ldots, n_k run through the integers subject to $k \ge 3$, $n_1 \ge \ldots \ge n_k \ge 1$ and $n_1 + \ldots + n_k = N$.
-	Day 2
1	Let a be an integer and n a positive integer . Show that the sum :
	$\sum_{k=1}^n a^{(k,n)}$
	is divisible by n , where (x,y) is the greatest common divisor of the numbers x and y .

AoPS Community

2015 Romania Team Selection Tests

- 2 Let ABC be a triangle. Let A' be the center of the circle through the midpoint of the side BCand the orthogonal projections of B and C on the lines of support of the internal bisectrices of the angles ACB and ABC, respectively; the points B' and C' are defined similarly. Prove that the nine-point circle of the triangle ABC and the circumcircle of A'B'C' are concentric.
- **3** Given a positive real number t, determine the sets A of real numbers containing t, for which there exists a set B of real numbers depending on A, $|B| \ge 4$, such that the elements of the set $AB = \{ab \mid a \in A, b \in B\}$ form a finite arithmetic progression.
- **4** Consider the integral lattice \mathbb{Z}^n , $n \ge 2$, in the Euclidean *n*-space. Define a *line* in \mathbb{Z}^n to be a set of the form $a_1 \times \cdots \times a_{k-1} \times \mathbb{Z} \times a_{k+1} \times \cdots \times a_n$ where *k* is an integer in the range $1, 2, \ldots, n$, and the a_i are arbitrary integers. A subset *A* of \mathbb{Z}^n is called *admissible* if it is non-empty, finite, and every *line* in \mathbb{Z}^n which intersects *A* contains at least two points from *A*. A subset *N* of \mathbb{Z}^n is called *null* if it is non-empty, and every *line* in \mathbb{Z}^n intersects *N* in an even number of points (possibly zero).

(a) Prove that every *admissible* set in \mathbb{Z}^2 contains a *null* set.

(b) Exhibit an *admissible* set in \mathbb{Z}^3 no subset of which is a *null* set .

- Day 3

- 1 Two circles γ and γ' cross one another at points A and B. The tangent to γ' at A meets γ again at C, the tangent to γ at A meets γ' again at C', and the line CC' separates the points A and B. Let Γ be the circle externally tangent to γ , externally tangent to γ' , tangent to the line CC', and lying on the same side of CC' as B. Show that the circles γ and γ' intercept equal segments on one of the tangents to Γ through A.
- **2** Let $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ be sequences of real numbers such that $a_0 > \frac{1}{2}$, $a_{n+1} \ge a_n$ and $b_{n+1} = a_n(b_n + b_{n+2})$ for all non-negative integers n. Show that the sequence $(b_n)_{n\geq 0}$ is bounded.
- 3 If k and n are positive integers, and k ≤ n, let M(n, k) denote the least common multiple of the numbers n, n − 1,..., n − k + 1.Let f(n) be the largest positive integer k ≤ n such that M(n, 1) < M(n, 2) < ... < M(n, k). Prove that :
 (a) f(n) < 3√n for all positive integers n.
 (b) If N is a positive integer, then f(n) > N for all but finitely many positive integers n.
- **4** Given two integers $h \ge 1$ and $p \ge 2$, determine the minimum number of pairs of opponents an *hp*-member parliament may have, if in every partition of the parliament into *h* houses of *p* member each, some house contains at least one pair of opponents.
- Day 4

1 Let *ABC* and *ABD* be coplanar triangles with equal perimeters. The lines of support of the internal bisectrices of the angles *CAD* and *CBD* meet at *P*. Show that the angles *APC* and

AoPS Community

_

BPD are congruent.

2	Given an integer $k \ge 2$, determine the largest number of divisors the binomial coefficient $\binom{n}{k}$ may have in the range $n - k + 1,, n$, as n runs through the integers greater than or equal to k .
3	Let <i>n</i> be a positive integer . If σ is a permutation of the first <i>n</i> positive integers , let $S(\sigma)$ be the set of all distinct sums of the form $\sum_{i=k}^{l} \sigma(i)$ where $1 \le k \le l \le n$. (a) Exhibit a permutation σ of the first <i>n</i> positive integers such that $ S(\sigma) \ge \left \frac{(n+1)^2}{4}\right $.
	(b) Show that $ S(\sigma) > \frac{n\sqrt{n}}{4\sqrt{2}}$ for all permutations σ of the first n positive integers .
-	Day 5
1	Let ABC be a triangle. Let P_1 and P_2 be points on the side AB such that P_2 lies on the segment BP_1 and $AP_1 = BP_2$; similarly, let Q_1 and Q_2 be points on the side BC such that Q_2 lies on the segment BQ_1 and $BQ_1 = CQ_2$. The segments P_1Q_2 and P_2Q_1 meet at R , and the circles P_1P_2R and Q_1Q_2R meet again at S , situated inside triangle P_1Q_1R . Finally, let M be the midpoint of the side AC . Prove that the angles P_1RS and Q_1RM are equal.
2	Let n be an integer greater than 1, and let p be a prime divisor of n . A confederation consists of p states, each of which has exactly n airports. There are p air companies operating interstate flights only such that every two airports in different states are joined by a direct (two-way) flight operated by one of these companies. Determine the maximal integer N satisfying the following condition: In every such confederation it is possible to choose one of the p air companies and N of the np airports such that one may travel (not necessarily directly) from any one of the N chosen airports to any other such only by flights operated by the chosen air company.
3	Define a sequence of integers by $a_0 = 1$, and $a_n = \sum_{k=0}^{n-1} \binom{n}{k} a_k$, $n \ge 1$. Let m be a positive integer, let p be a prime, and let q and r be non-negative integers. Prove that :
	$a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}$

Act of Problem Solving is an ACS WASC Accredited School.