AoPS Community

ELMO Problems 2019

www.artofproblemsolving.com/community/c895165
by Tintarn, pieater314159, v_Enhance, tastymath75025

- Day 1

1 Let $P(x)$ be a polynomial with integer coefficients such that $P(0)=1$, and let $c>1$ be an integer. Define $x_{0}=0$ and $x_{i+1}=P\left(x_{i}\right)$ for all integers $i \geq 0$. Show that there are infinitely many positive integers n such that $\operatorname{gcd}\left(x_{n}, n+c\right)=1$.
Proposed by Milan Haiman and Carl Schildkraut
2 Let $m, n \geq 2$ be integers. Carl is given n marked points in the plane and wishes to mark their centroid.* He has no standard compass or straightedge. Instead, he has a device which, given marked points A and B, marks the $m-1$ points that divide segment $\overline{A B}$ into m congruent parts (but does not draw the segment).
For which pairs (m, n) can Carl necessarily accomplish his task, regardless of which n points he is given?
*Here, the centroid of n points with coordinates $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is the point with coordinates $\left(\frac{x_{1}+\cdots+x_{n}}{n}, \frac{y_{1}+\cdots+y_{n}}{n}\right)$.
Proposed by Holden Mui and Carl Schildkraut
3 Let $n \geq 3$ be a fixed integer. A game is played by n players sitting in a circle. Initially, each player draws three cards from a shuffled deck of $3 n$ cards numbered $1,2, \ldots, 3 n$. Then, on each turn, every player simultaneously passes the smallest-numbered card in their hand one place clockwise and the largest-numbered card in their hand one place counterclockwise, while keeping the middle card.

Let T_{r} denote the configuration after r turns (so T_{0} is the initial configuration). Show that T_{r} is eventually periodic with period n, and find the smallest integer m for which, regardless of the initial configuration, $T_{m}=T_{m+n}$.
Proposed by Carl Schildkraut and Colin Tang

- Day 2

4 Carl is given three distinct non-parallel lines $\ell_{1}, \ell_{2}, \ell_{3}$ and a circle ω in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line ℓ and a point P, constructs a new line passing through P parallel to ℓ. (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle ω whose sides are parallel to $\ell_{1}, \ell_{2}, \ell_{3}$ in some order.

Proposed by Vincent Huang

5 Let S be a nonempty set of positive integers such that, for any (not necessarily distinct) integers a and b in S, the number $a b+1$ is also in S. Show that the set of primes that do not divide any element of S is finite.

Proposed by Carl Schildkraut

6 Carl chooses a functional expression* E which is a finite nonempty string formed from a set x_{1}, x_{2}, \ldots of variables and applications of a function f, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation $E=$ 0 , and lets S denote the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equation holds for any choices of real numbers x_{1}, x_{2}, \ldots (For example, if Carl chooses the functional equation

$$
f\left(2 f\left(x_{1}\right)+x_{2}\right)-2 f\left(x_{1}\right)-x_{2}=0,
$$

then S consists of one function, the identity function.
(a) Let X denote the set of functions with domain \mathbb{R} and image exactly \mathbb{Z}. Show that Carl can choose his functional equation such that S is nonempty but $S \subseteq X$.
(b) Can Carl choose his functional equation such that $|S|=1$ and $S \subseteq X$?
*These can be defined formally in the following way: the set of functional expressions is the minimal one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any positive integer i, the variable x_{i} is a functional expression, and (iii) if V and W are functional expressions, then so are $f(V), V+W, V-W$, and $V \cdot W$.
Proposed by Carl Schildkraut

