Art of Problem Solving

AoPS Community

2017 Romanian Master of Mathematics Shortlist

RMM 2017 Shortlist

www.artofproblemsolving.com/community/c902314
by parmenides51, GGPiku, freghyy

- Algebra

A1 \quad A set A is endowed with a binary operation $*$ satisfying the following four conditions:
(1) If a, b, c are elements of A, then $a *(b * c)=(a * b) * c$,
(2) If a, b, c are elements of A such that $a * c=b * c$, then $a=b$,
(3) There exists an element e of A such that $a * e=a$ for all a in A, and
(4) If a and b are distinct elements of $A-\{e\}$, then $a^{3} * b=b^{3} * a^{2}$, where $x^{k}=x * x^{k-1}$ for all integers $k \geq 2$ and all x in A.
Determine the largest cardinality A may have.
proposed by Bojan Basic, Serbia

- Combinatorics

C1 A planar country has an odd number of cities separated by pairwise distinct distances. Some of these cities are connected by direct two-way flights. Each city is directly connected to exactly two ther cities, and the latter are located farthest from it. Prove that, using these flights, one may go from any city to any other city

C2 Fix an integer $n \geq 2$ and let A be an $n \times n$ array with n cells cut out so that exactly one cell is removed out of every row and every column. A stick is a $1 \times k$ or $k \times 1$ subarray of A, where k is a suitable positive integer.
(a) Determine the minimal number of sticks A can be dissected into.
(b) Show that the number of ways to dissect A into a minimal number of sticks does not exceed 100^{n}.
proposed by Palmer Mebane and Nikolai Beluhov
a variation of part a, was problem 5 (https://artof problemsolving.com/community/c6h1389637p774307 a variation of part b, was posted here (https://artofproblemsolving. com/community/c6h1389663p7743 this post was made in order to complete the post collection of RMM Shortlist 2017

- Geometry

G1 Let $A B C D$ be a trapezium, $A D \| B C$, and let E, F be points on the sides $A B$ and $C D$, respectively. The circumcircle of $A E F$ meets $A D$ again at A_{1}, and the circumcircle of $C E F$ meets $B C$ again at C_{1}. Prove that $A_{1} C_{1}, B D, E F$ are concurrent.

G2 Let $A B C$ be a triangle. Consider the circle ω_{B} internally tangent to the sides $B C$ and $B A$, and to the circumcircle of the triangle $A B C$, let P be the point of contact of the two circles. Similarly, consider the circle ω_{C} internally tangent to the sides $C B$ and $C A$, and to the circumcircle of the triangle $A B C$, let Q be the point of contact of the two circles. Show that the incentre of the triangle $A B C$ lies on the segment $P Q$ if and only if $A B+A C=3 B C$.
proposed by Luis Eduardo Garcia Hernandez, Mexico
G3 Let $A B C D$ be a convex quadrilateral and let P and Q be variable points inside this quadrilateral so that $\angle A P B=\angle C P D=\angle A Q B=\angle C Q D$. Prove that the lines $P Q$ obtained in this way all pass through a fixed point, or they are all parallel.

- Number Theory

N1 For each positive integer k, let $S(k)$ the sum of digits of k in decimal system.
Show that there is an integer k, with no 9 in it's decimal representation, such that:

$$
S\left(2^{24^{2017}} k\right)=S(k)
$$

N2 Let x, y and k be three positive integers. Prove that there exist a positive integer N and a set of $k+1$ positive integers $\left\{b_{0}, b_{1}, b_{2}, \ldots, b_{k}\right\}$, such that, for every $i=0,1, \ldots, k$, the b_{i}-ary expansion of N is a 3 -digit palindrome, and the b_{0}-ary expansion is exactly $\overline{\mathrm{xyx}}$.
proposed by Bojan Basic, Serbia

