

AoPS Community

Final Round - Korea 2015

www.artofproblemsolving.com/community/c90263 by rkm0959

-	Day 1, March 21st
1	Find all functions $f: R \to R$ such that $f(x^{2015} + (f(y))^{2015}) = (f(x))^{2015} + y^{2015}$ holds for all reals x, y
2	In a triangle $\triangle ABC$ with incenter <i>I</i> , the incircle meets lines <i>BC</i> , <i>CA</i> , <i>AB</i> at <i>D</i> , <i>E</i> , <i>F</i> respectively. Define the circumcenter of $\triangle IAB$ and $\triangle IAC O_1$ and O_2 respectively. Let the two intersections of the circumcircle of $\triangle ABC$ and line <i>EF</i> be <i>P</i> , <i>Q</i> . Prove that the circumcenter of $\triangle DPQ$ lies on the line O_1O_2 .
3	 There are at least 3 subway stations in a city. In this city, there exists a route that passes through more than <i>L</i> subway stations, without revisiting. Subways run both ways, which means that if you can go from subway station A to B, you can also go from B to A. Prove that at least one of the two holds. (i). There exists three subway stations <i>A</i>, <i>B</i>, <i>C</i> such that there does not exist a route from <i>A</i> to <i>B</i> which doesn't pass through <i>C</i>. (ii). There is a cycle passing through at least [√2<i>L</i>] stations, without revisiting a same station
	more than once.
-	Day 2, March 22nd
4	$\triangle ABC$ is an acute triangle and its orthocenter is <i>H</i> . The circumcircle of $\triangle ABH$ intersects line <i>BC</i> at <i>D</i> . Lines <i>DH</i> and <i>AC</i> meets at <i>P</i> , and the circumcenter of $\triangle ADP$ is <i>Q</i> . Prove that the circumcenter of $\triangle ABH$ lies on the circumcircle of $\triangle BDQ$.
5	For a fixed positive integer k, there are two sequences A_n and B_n . They are defined inductively, by the following recurrences. $A_1 = k$, $A_2 = k$, $A_{n+2} = A_n A_{n+1}$ $B_1 = 1$, $B_2 = k$, $B_{n+2} = \frac{B_{n+1}^3 + 1}{B_n}$ Prove that for all positive integers n , $A_{2n}B_{n+3}$ is an integer.
6	There are 2015 distinct circles in a plane, with radius 1. Prove that you can select 27 circles, which form a set C, which satisfy the following.

AoPS Community

2015 Korea - Final Round

For two arbitrary circles in *C*, they intersect with each other or For two arbitrary circles in *C*, they don't intersect with each other.

Act of Problem Solving is an ACS WASC Accredited School.