Art of Problem Solving

AoPS Community

Final Round - Korea 2015

www.artofproblemsolving.com/community/c90263
by rkm0959

- Day 1, March 21st

1 Find all functions $f: R \rightarrow R$ such that
$f\left(x^{2015}+(f(y))^{2015}\right)=(f(x))^{2015}+y^{2015}$ holds for all reals x, y
2 In a triangle $\triangle A B C$ with incenter I, the incircle meets lines $B C, C A, A B$ at D, E, F respectively.
Define the circumcenter of $\triangle I A B$ and $\triangle I A C O_{1}$ and O_{2} respectively.
Let the two intersections of the circumcircle of $\triangle A B C$ and line $E F$ be P, Q.
Prove that the circumcenter of $\triangle D P Q$ lies on the line $O_{1} O_{2}$.
3 There are at least 3 subway stations in a city.
In this city, there exists a route that passes through more than L subway stations, without revisiting.
Subways run both ways, which means that if you can go from subway station A to B, you can also go from B to A.
Prove that at least one of the two holds.
(i). There exists three subway stations A, B, C such that there does not exist a route from A to B which doesn't pass through C.
(ii). There is a cycle passing through at least $\lfloor\sqrt{2 L}\rfloor$ stations, without revisiting a same station more than once.

- Day 2, March 22nd
$4 \triangle A B C$ is an acute triangle and its orthocenter is H.
The circumcircle of $\triangle A B H$ intersects line $B C$ at D.
Lines $D H$ and $A C$ meets at P, and the circumcenter of $\triangle A D P$ is Q.
Prove that the circumcenter of $\triangle A B H$ lies on the circumcircle of $\triangle B D Q$.
$5 \quad$ For a fixed positive integer k, there are two sequences A_{n} and B_{n}.
They are defined inductively, by the following recurrences. $A_{1}=k, A_{2}=k, A_{n+2}=A_{n} A_{n+1}$ $B_{1}=1, B_{2}=k, B_{n+2}=\frac{B_{n+1}^{3}+1}{B_{n}}$
Prove that for all positive integers $n, A_{2 n} B_{n+3}$ is an integer.
6 There are 2015 distinct circles in a plane, with radius 1.
Prove that you can select 27 circles, which form a set C, which satisfy the following.

For two arbitrary circles in C, they intersect with each other or For two arbitrary circles in C, they don't intersect with each other.

