AoPS Community

JBMO Shortlist 2018

www.artofproblemsolving.com/community/c903330
by parmenides51, Steve12345, dangerousliri, sqing, pure_chaos, iDra36, Orestis_Lignos

- Algebra

A1 Let x, y, z be positive real numbers . Prove: $\frac{x}{\sqrt[4]{\sqrt[4]{y}+\sqrt[4]{z}}}+\frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}}+\frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}} \geq \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^{7}}}{\sqrt{2 \sqrt{27}}}$
A2 Find the maximum positive integer k such that for any positive integers m, n such that $m^{3}+n^{3}>$ $(m+n)^{2}$, we have

$$
m^{3}+n^{3} \geq(m+n)^{2}+k
$$

Proposed by Dorlir Ahmeti, Albania
A3 Let a, b, c be positive real numbers. Prove that

$$
\frac{1}{a b(b+1)(c+1)}+\frac{1}{b c(c+1)(a+1)}+\frac{1}{c a(a+1)(b+1)} \geq \frac{3}{(1+a b c)^{2}} .
$$

A4 Let $k>1, n>2018$ be positive integers, and let n be odd. The nonzero rational numbers $x_{1}, x_{2}, \ldots, x_{n}$ are not all equal and satisfy

$$
x_{1}+\frac{k}{x_{2}}=x_{2}+\frac{k}{x_{3}}=x_{3}+\frac{k}{x_{4}}=\ldots=x_{n-1}+\frac{k}{x_{n}}=x_{n}+\frac{k}{x_{1}}
$$

Find:
a) the product $x_{1} x_{2} \ldots x_{n}$ as a function of k and n
b) the least value of k, such that there exist $n, x_{1}, x_{2}, \ldots, x_{n}$ satisfying the given conditions.

A5 Let a, b, c, d and x, y, z, t be real numbers such that $0 \leq a, b, c, d \leq 1, x, y, z, t \geq 1$ and $a+b+c+$ $d+x+y+z+t=8$.
Prove that $a^{2}+b^{2}+c^{2}+d^{2}+x^{2}+y^{2}+z^{2}+t^{2} \leq 28$
A6 For a, b, c positive real numbers such that $a b+b c+c a=3$, prove: $\frac{a}{\sqrt{a^{3}+5}}+\frac{b}{\sqrt{b^{3}+5}}+\frac{c}{\sqrt{c^{3}+5}} \leq \frac{\sqrt{6}}{2}$ Proposed by Dorlir Ahmeti, Albania

A7 Let A be a set of positive integers satisfying the following :
a.) If $n \in A$, then $n \leq 2018$.
b.) If $S \subset A$ such that $|S|=3$, then there exists $m, n \in S$ such that $|n-m| \geq \sqrt{n}+\sqrt{m}$

What is the maximum cardinality of A ?

- Combinatorics

C1 A set S is called neighbouring if it has the following two properties:
a) S has exactly four elements
b) for every element x of S, at least one of the numbers $x-1$ or $x+1$ belongs to S.

Find the number of all neighbouring subsets of the set $\{1,2, \ldots, n\}$.
C2 Find max number n of numbers of three digits such that:

1. Each has digit sum 9
2. No one contains digit 0
3. Each 2 have different unit digits
4. Each 2 have different decimal digits
5. Each 2 have different hundreds digits

C3 The cells of a 8×8 table are initially white. Alice and Bob play a game. First Alice paints n of the fields in red. Then Bob chooses 4 rows and 4 columns from the table and paints all fields in them in black. Alice wins if there is at least one red field left. Find the least value of n such that Alice can win the game no matter how Bob plays.

- Geometry

G1 Let H be the orthocentre of an acute triangle $A B C$ with $B C>A C$, inscribed in a circle Γ. The circle with centre C and radius $C B$ intersects Γ at the point D, which is on the arc $A B$ not containing C. The circle with centre C and radius $C A$ intersects the segment $C D$ at the point K. The line parallel to $B D$ through K, intersects $A B$ at point L. If M is the midpoint of $A B$ and N is the foot of the perpendicular from H to $C L$, prove that the line $M N$ bisects the segment CH.

G2 Let $A B C$ be a right angled triangle with $\angle A=90^{\circ}$ and $A D$ its altitude. We draw parallel lines from D to the vertical sides of the triangle and we call E, Z their points of intersection with $A B$ and $A C$ respectively. The parallel line from C to $E Z$ intersects the line $A B$ at the point N. Let A^{\prime} be the symmetric of A with respect to the line $E Z$ and I, K the projections of A^{\prime} onto $A B$ and $A C$ respectively. If T is the point of intersection of the lines $I K$ and $D E$, prove that $\angle N A^{\prime} T=\angle A D T$.

G3 Let $\triangle A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ the symmetrics of vertex over opposite sides. The intersection of the circumcircles of $\triangle A B B^{\prime}$ and $\triangle A C C^{\prime}$ is $A_{1} \cdot B_{1}$ and C_{1} are defined similarly.Prove that lines
$A A_{1}, B B_{1}$ and $C C_{1}$ are concurent.
G4 Let $A B C$ be a triangle with side-lengths a, b, c, inscribed in a circle with radius R and let I be ir's incenter. Let P_{1}, P_{2} and P_{3} be the areas of the triangles $A B I, B C I$ and $C A I$, respectively. Prove that

$$
\frac{R^{4}}{P_{1}^{2}}+\frac{R^{4}}{P_{2}^{2}}+\frac{R^{4}}{P_{3}^{2}} \geq 16
$$

G5 Given a rectangle $A B C D$ such that $A B=b>2 a=B C$, let E be the midpoint of $A D$. On a line parallel to $A B$ through point E, a point G is chosen such that the area of $G C E$ is

$$
(G C E)=\frac{1}{2}\left(\frac{a^{3}}{b}+a b\right)
$$

Point H is the foot of the perpendicular from E to $G D$ and a point I is taken on the diagonal $A C$ such that the triangles $A C E$ and $A E I$ are similar. The lines $B H$ and $I E$ intersect at K and the lines $C A$ and $E H$ intersect at J. Prove that $K J \perp A B$.

G6 Let $X Y$ be a chord of a circle Ω, with center O, which is not a diameter. Let P, Q be two distinct points inside the segment $X Y$, where Q lies between P and X. Let ℓ the perpendicular line drawn from P to the diameter which passes through Q. Let M be the intersection point of ℓ and Ω, which is closer to P. Prove that

$$
M P \cdot X Y \geq 2 \cdot Q X \cdot P Y
$$

- Number Theory

NT1 Find all integers m and n such that the fifth power of m minus the fifth power of n is equal to 16 mn .

NT2 Find all ordered pairs of positive integers (m, n) such that : $125 * 2^{n}-3^{m}=271$
NT3 Find all four-digit positive integers $\overline{a b c d}=10^{3} a+10^{2} b+10 c+d(a \neq 0)$ such that: $\overline{a b c d}=$ $a^{a+b+c+d}-a^{-a+b-c+d}+a$

NT4 Prove that there exist infinitely many positive integers n such that $\frac{4^{n}+2^{n}+1}{n^{2}+n+1}$ is a positive integer.

