

AoPS Community

2018 JBMO Shortlist

JBMO Shortlist 2018

www.artofproblemsolving.com/community/c903330

by parmenides51, Steve12345, dangerousliri, sqing, pure_chaos, iDra36, Orestis_Lignos

-	Algebra		

- A1 Let x, y, z be positive real numbers . Prove: $\frac{x}{\sqrt{\sqrt[4]{y}+\sqrt[4]{z}}} + \frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}} + \frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}} \ge \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^7}}{\sqrt{2\sqrt{27}}}$
 - A2 Find the maximum positive integer k such that for any positive integers m, n such that $m^3 + n^3 > (m + n)^2$, we have

$$m^3 + n^3 \ge (m+n)^2 + k$$

Proposed by Dorlir Ahmeti, Albania

A3 Let *a*, *b*, *c* be positive real numbers . Prove that

$$\frac{1}{ab(b+1)(c+1)} + \frac{1}{bc(c+1)(a+1)} + \frac{1}{ca(a+1)(b+1)} \ge \frac{3}{(1+abc)^2}.$$

A4 Let k > 1, n > 2018 be positive integers, and let n be odd. The nonzero rational numbers x_1, x_2, \ldots, x_n are not all equal and satisfy

$$x_1 + \frac{k}{x_2} = x_2 + \frac{k}{x_3} = x_3 + \frac{k}{x_4} = \dots = x_{n-1} + \frac{k}{x_n} = x_n + \frac{k}{x_1}$$

Find: a) the product $x_1x_2...x_n$ as a function of k and nb) the least value of k, such that there exist $n, x_1, x_2, ..., x_n$ satisfying the given conditions.

- **A5** Let a, b, c, d and x, y, z, t be real numbers such that $0 \le a, b, c, d \le 1$, $x, y, z, t \ge 1$ and a + b + c + d + x + y + z + t = 8. Prove that $a^2 + b^2 + c^2 + d^2 + x^2 + y^2 + z^2 + t^2 \le 28$
- **A6** For a, b, c positive real numbers such that ab + bc + ca = 3, prove: $\frac{a}{\sqrt{a^3+5}} + \frac{b}{\sqrt{b^3+5}} + \frac{c}{\sqrt{c^3+5}} \le \frac{\sqrt{6}}{2}$ Proposed by Dorlir Ahmeti, Albania

AoPS	Community 2018 JBMO Shortlis
Α7	Let <i>A</i> be a set of positive integers satisfying the following : <i>a</i> .) If $n \in A$, then $n \leq 2018$. <i>b</i> .) If $S \subset A$ such that $ S = 3$, then there exists $m, n \in S$ such that $ n - m \geq \sqrt{n} + \sqrt{m}$ What is the maximum cardinality of <i>A</i> ?
-	Combinatorics
C1	 A set S is called <i>neighbouring</i> if it has the following two properties: a) S has exactly four elements b) for every element x of S, at least one of the numbers x - 1 or x + 1 belongs to S. Find the number of all <i>neighbouring</i> subsets of the set {1, 2,, n}.
C2	 Find max number n of numbers of three digits such that : 1. Each has digit sum 9 2. No one contains digit 0 3. Each 2 have different unit digits 4. Each 2 have different decimal digits 5. Each 2 have different hundreds digits
C3	The cells of a 8×8 table are initially white. Alice and Bob play a game. First Alice paints n of the fields in red. Then Bob chooses 4 rows and 4 columns from the table and paints all fields in them in black. Alice wins if there is at least one red field left. Find the least value of n such that Alice can win the game no matter how Bob plays.
-	Geometry
G1	Let <i>H</i> be the orthocentre of an acute triangle <i>ABC</i> with <i>BC</i> > <i>AC</i> , inscribed in a circle Γ . The circle with centre <i>C</i> and radius <i>CB</i> intersects Γ at the point <i>D</i> , which is on the arc <i>AB</i> not containing <i>C</i> . The circle with centre <i>C</i> and radius <i>CA</i> intersects the segment <i>CD</i> at the point <i>K</i> . The line parallel to <i>BD</i> through <i>K</i> , intersects <i>AB</i> at point <i>L</i> . If <i>M</i> is the midpoint of <i>AB</i> and <i>N</i> is the foot of the perpendicular from <i>H</i> to <i>CL</i> , prove that the line <i>MN</i> bisects the segment <i>CH</i> .
G2	Let ABC be a right angled triangle with $\angle A = 90^{\circ}$ and AD its altitude. We draw parallel lines from D to the vertical sides of the triangle and we call E, Z their points of intersection with AB and AC respectively. The parallel line from C to EZ intersects the line AB at the point N . Let A' be the symmetric of A with respect to the line EZ and I, K the projections of A' onto AB and AC respectively. If T is the point of intersection of the lines IK and DE , prove that $\angle NA'T = \angle ADT$.
G3	Let $\triangle ABC$ and A',B',C' the symmetrics of vertex over opposite sides. The intersection of the

of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1.B_1$ and C_1 are defined similarly. Prove that lines

AoPS Community

 AA_1, BB_1 and CC_1 are concurrent.

G4 Let ABC be a triangle with side-lengths a, b, c, inscribed in a circle with radius R and let I be ir's incenter. Let P_1, P_2 and P_3 be the areas of the triangles ABI, BCI and CAI, respectively. Prove that

$$\frac{R^4}{P_1^2} + \frac{R^4}{P_2^2} + \frac{R^4}{P_3^2} \geq 16$$

G5 Given a rectangle ABCD such that AB = b > 2a = BC, let *E* be the midpoint of *AD*. On a line parallel to *AB* through point *E*, a point *G* is chosen such that the area of *GCE* is

$$(GCE) = \frac{1}{2} \left(\frac{a^3}{b} + ab \right)$$

Point *H* is the foot of the perpendicular from *E* to *GD* and a point *I* is taken on the diagonal *AC* such that the triangles *ACE* and *AEI* are similar. The lines *BH* and *IE* intersect at *K* and the lines *CA* and *EH* intersect at *J*. Prove that $KJ \perp AB$.

G6 Let XY be a chord of a circle Ω , with center O, which is not a diameter. Let P, Q be two distinct points inside the segment XY, where Q lies between P and X. Let ℓ the perpendicular line drawn from P to the diameter which passes through Q. Let M be the intersection point of ℓ and Ω , which is closer to P. Prove that

$$MP \cdot XY \geq 2 \cdot QX \cdot PY$$

-	Number Theory
NT1	Find all integers m and n such that the fifth power of m minus the fifth power of n is equal to $16mn$.
NT2	Find all ordered pairs of positive integers (m, n) such that : $125 * 2^n - 3^m = 271$
NT3	Find all four-digit positive integers $\overline{abcd} = 10^3 a + 10^2 b + 10c + d \ (a \neq 0)$ such that: $\overline{abcd} = a^{a+b+c+d} - a^{-a+b-c+d} + a$
NT4	Prove that there exist infinitely many positive integers n such that $\frac{4^n+2^n+1}{n^2+n+1}$ is a positive integer.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.