AoPS Community

Bosnia and Herzegovina Junior BMO TST 2019

www.artofproblemsolving.com/community/c903547
by sqing, Steve12345

1 Let x, y, z be real numbers $(x \neq y, y \neq z, x \neq z)$ different from 0 . If $\frac{x^{2}-y z}{x(1-y z)}=\frac{y^{2}-x z}{y(1-x z)}$, prove that the following relation holds:

$$
x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z} .
$$

2 2. Let $A B C$ be a triangle and $A D$ the angle bisector $(D \in B C)$. The perpendicular from B to $A D$ cuts the circumcircle of triangle $A B D$ at E. If O is the center of the circle around $A B C$, prove A, O, E are collinear.
https://artofproblemsolving.com/community/c6h605458p3596629
https://artofproblemsolving.com/community/c6h1 294020p6857833
3 3. Let S be the set of all positive integers from 1 to 100 included. Two players play a game. The first player removes any k numbers he wants, from S. The second player's goal is to pick k different numbers, such that their sum is 100 . Which player has the winning strategy if : a) $k=9 ? b) k=8$?

4 4. Let there be a variable positive integer whose last two digits are $3^{\prime} s$. Prove that this number is divisible by a prime greater than 7 .

