

## **AoPS Community**

## Serbia JBMO TST 2019

www.artofproblemsolving.com/community/c903548 by parmenides51, sqing, Steve12345

| 1 | Does there exist a positive integer $n$ , such that the number of divisors of $n!$ is divisible by $2019$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Let $a, b, c \in (0, 1)$ . Prove that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $a+b+c+2abc > ab+bc+ca+2\sqrt{abc}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | JBMOTSTSerbia2019(https://artofproblemsolving.com/community/c6h1870126p12682434)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | 3. Congruent circles $k_1$ and $k_2$ intersect in the points $A$ and $B$ . Let $P$ be a variable point of arc $AB$ of circle $k_2$ which is inside $k_1$ and let $AP$ intersect $k_1$ once more in point $C$ , and the ray $CB$ intersects $k_2$ once more in $D$ . Let the angle bisector of $\angle CAD$ intersect $k_1$ in $E$ , and the circle $k_2$ in $F$ . Ray $FB$ intersects $k_1$ in $Q$ . If $X$ is one of the intersection points of circumscribed circles of triangles $CDP$ and $EQF$ , prove that the triangle $CFX$ is equilateral. |
| 4 | 4. On a table there are notes of values: 1, 2, 5, 10, 20 ,50, 100, 200, 500, 1000, 2000 and 5000 (the number of any of these notes can be any non-negative integer). Two players , First and Second play a game in turns (First plays first). With one move a player can take any one note of value higher than 1 , and replace it with notes of less value. The value of the chosen note is equal                                                                                                                                                  |

to the sum of the values of the replaced notes. The loser is the player which can not play any

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🕬

more moves. Which player has the winning strategy?

© 2020 AoPS Incorporated 1

2019 Serbia JBMO TST

Art of Problem Solving is an ACS WASC Accredited School.