Art of Problem Solving

AoPS Community

Finals 2019

www.artofproblemsolving.com/community/c904216
by ryan17

- Day 1

1 Let $A B C$ be an acute triangle. Points X and Y lie on the segments $A B$ and $A C$, respectively, such that $A X=A Y$ and the segment $X Y$ passes through the orthocenter of the triangle $A B C$. Lines tangent to the circumcircle of the triangle $A X Y$ at points X and Y intersect at point P. Prove that points A, B, C, P are concyclic.

2 Let p a prime number and r an integer such that $p \mid r^{7}-1$. Prove that if there exist integers a, b such that $p \mid r+1-a^{2}$ and $p \mid r^{2}+1-b^{2}$, then there exist an integer c such that $p \mid r^{3}+1-c^{2}$.
$3 \quad n \geq 3$ guests met at a party. Some of them know each other but there is no quartet of different guests a, b, c, d such that in pairs $\{a, b\},\{b, c\},\{c, d\},\{d, a\}$ guests know each other but in pairs $\{a, c\},\{b, d\}$ guests don't know each other. We say a nonempty set of guests X is an ingroup, when guests from X know each other pairwise and there are no guests not from X knowing all guests from X. Prove that there are at most $\frac{n(n-1)}{2}$ different ingroups at that party.

- Day 2

4 Let n, k, ℓ be positive integers and $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ an injection such that $\sigma(x)-$ $x \in\{k,-\ell\}$ for all $x \in\{1,2, \ldots, n\}$. Prove that $k+\ell \mid n$.

5 The sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive real numbers satisfies the following conditions:

$$
\sum_{i=1}^{n} \frac{1}{a_{i}} \leq 1 \quad \text { and } \quad a_{i} \leq a_{i-1}+1
$$

for all $i \in\{1,2, \ldots, n\}$, where a_{0} is an integer. Prove that

$$
n \leq 4 a_{0} \cdot \sum_{i=1}^{n} \frac{1}{a_{i}}
$$

6 Denote by Ω the circumcircle of the acute triangle $A B C$. Point D is the midpoint of the arc $B C$ of Ω not containing A. Circle ω centered at D is tangent to the segment $B C$ at point E. Tangents to the circle ω passing through point A intersect line $B C$ at points K and L such that points B, K, L, C lie on the line $B C$ in that order. Circle γ_{1} is tangent to the segments $A L$ and $B L$ and to the circle Ω at point M. Circle γ_{2} is tangent to the segments $A K$ and $C K$ and
to the circle Ω at point N. Lines $K N$ and $L M$ intersect at point P. Prove that $\varangle K A P=\varangle E A L$.

