

AoPS Community

Finals 2019

www.artofproblemsolving.com/community/c904216 by ryan17

-	Day 1
1	Let ABC be an acute triangle. Points X and Y lie on the segments AB and AC , respectively, such that $AX = AY$ and the segment XY passes through the orthocenter of the triangle ABC . Lines tangent to the circumcircle of the triangle AXY at points X and Y intersect at point P. Prove that points A, B, C, P are concyclic.
2	Let p a prime number and r an integer such that $p r^7 - 1$. Prove that if there exist integers a, b such that $p r + 1 - a^2$ and $p r^2 + 1 - b^2$, then there exist an integer c such that $p r^3 + 1 - c^2$.
3	$n \ge 3$ guests met at a party. Some of them know each other but there is no quartet of different guests a, b, c, d such that in pairs $\{a, b\}, \{b, c\}, \{c, d\}, \{d, a\}$ guests know each other but in pairs $\{a, c\}, \{b, d\}$ guests don't know each other. We say a nonempty set of guests X is an <i>ingroup</i> , when guests from X know each other pairwise and there are no guests not from X knowing all guests from X . Prove that there are at most $\frac{n(n-1)}{2}$ different ingroups at that party.
-	Day 2
4	Let n, k, ℓ be positive integers and $\sigma : \{1, 2,, n\} \rightarrow \{1, 2,, n\}$ an injection such that $\sigma(x) - x \in \{k, -\ell\}$ for all $x \in \{1, 2,, n\}$. Prove that $k + \ell n$.
5	The sequence a_1, a_2, \ldots, a_n of positive real numbers satisfies the following conditions:
	$\sum_{i=1}^n rac{1}{a_i} \leq 1$ and $a_i \leq a_{i-1}+1$
	for all $i \in \{1, 2, \dots, n\}$, where a_0 is an integer. Prove that

 $n \le 4a_0 \cdot \sum_{i=1}^n \frac{1}{a_i}$

6 Denote by Ω the circumcircle of the acute triangle *ABC*. Point *D* is the midpoint of the arc *BC* of Ω not containing *A*. Circle ω centered at *D* is tangent to the segment *BC* at point *E*. Tangents to the circle ω passing through point *A* intersect line *BC* at points *K* and *L* such that points *B*, *K*, *L*, *C* lie on the line *BC* in that order. Circle γ_1 is tangent to the segments *AL* and *BL* and to the circle Ω at point *M*. Circle γ_2 is tangent to the segments *AK* and *CK* and

AoPS Community

2019 Polish MO Finals

to the circle Ω at point N. Lines KN and LM intersect at point P. Prove that $\triangleleft KAP = \triangleleft EAL$.

Act of Problem Solving is an ACS WASC Accredited School.