Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Match 2019

www.artofproblemsolving.com/community/c907196
by parmenides51, mofumofu, XbenX

- Day 1

1 Let ω be a circle. Points A, B, C, X, D, Y lie on ω in this order such that $B D$ is its diameter and $D X=D Y=D P$, where P is the intersection of $A C$ and $B D$. Denote by E, F the intersections of line $X P$ with lines $A B, B C$, respectively. Prove that points B, E, F, Y lie on a single circle.

2 We consider positive integers n having at least six positive divisors. Let the positive divisors of n be arranged in a sequence $\left(d_{i}\right)_{1 \leq i \leq k}$ with

$$
1=d_{1}<d_{2}<\cdots<d_{k}=n \quad(k \geq 6) .
$$

Find all positive integers n such that

$$
n=d_{5}^{2}+d_{6}^{2} .
$$

3 A dissection of a convex polygon into finitely many triangles by segments is called a trilateration if no three vertices of the created triangles lie on a single line (vertices of some triangles might lie inside the polygon). We say that a trilateration is good if its segments can be replaced with one-way arrows in such a way that the arrows along every triangle of the trilateration form a cycle and the arrows along the whole convex polygon also form a cycle. Find all $n \geq 3$ such that the regular n-gon has a good trilateration.

- Day 2

4 Given a real number α, find all pairs (f, g) of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x f(x+y)+\alpha \cdot y f(x-y)=g(x)+g(y) \quad, \forall x, y \in \mathbb{R}
$$

5 Determine whether there exist 100 disks $D_{2}, D_{3}, \ldots, D_{101}$ in the plane such that the following conditions hold for all pairs (a, b) of indices satisfying $2 \leq a<b \leq 101$:

- If $a \mid b$ then D_{a} is contained in D_{b}.
- If $\operatorname{gcd}(a, b)=1$ then D_{a} and D_{b} are disjoint.
(A disk $D(O, r)$ is a set of points in the plane whose distance to a given point O is at most a given positive real number r.)

6 Let $A B C$ be an acute triangle with $A B<A C$ and $\angle B A C=60^{\circ}$. Denote its altitudes by $A D, B E, C F$ and its orthocenter by H. Let K, L, M be the midpoints of sides $B C, C A, A B$, respectively. Prove that the midpoints of segments $A H, D K, E L, F M$ lie on a single circle.

