

AoPS Community

Silk Road Mathematics Competiton 2019

www.artofproblemsolving.com/community/c908014 by parmenides51

- 1 The altitudes of the acute-angled non-isosceles triangle ABC intersect at the point H. On the segment C_1H , where CC_1 is the altitude of the triangle, the point K is marked. Points L and M are the feet of perpendiculars from point K on straight lines AC and BC, respectively. The lines AM and BL intersect at N. Prove that $\angle ANK = \angle HNL$.
- **2** Let a_1, a_2, \ldots, a_{99} be positive real numbers such that $ia_j + ja_i \ge i + j$ for all $1 \le i < j \le 99$. Prove, that $(a_1 + 1)(a_2 + 2) \ldots (a_{99} + 99) \ge 100!$.
- **3** Find all pairs of (a, n) natural numbers such that $\varphi(a^n + n) = 2^n$. ($\varphi(n)$ is the Euler function, that is, the number of integers from 1 up to *n*, relative prime to *n*)
- 4 The sequence $\{a_n\}$ is defined as follows: $a_0 = 1$ and $a_n = \sum_{k=1}^{\lfloor \sqrt{n} \rfloor} a_{n-k^2}$ for $n \ge 1$. Prove that among $a_1, a_2, \ldots, a_{10^6}$ there are at least 500 even numbers. (Here, [x] is the largest integer not exceeding x.)

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱