AoPS Community

Silk Road Mathematics Competiton 2019

www.artofproblemsolving.com/community/c908014
by parmenides51

1 The altitudes of the acute-angled non-isosceles triangle $A B C$ intersect at the point H. On the segment $C_{1} H$, where $C C_{1}$ is the altitude of the triangle, the point K is marked. Points L and M are the feet of perpendiculars from point K on straight lines $A C$ and $B C$, respectively. The lines $A M$ and $B L$ intersect at N. Prove that $\angle A N K=\angle H N L$.

2 Let $a_{1}, a_{2}, \ldots, a_{99}$ be positive real numbers such that $i a_{j}+j a_{i} \geq i+j$ for all $1 \leq i<j \leq 99$. Prove, that $\left(a_{1}+1\right)\left(a_{2}+2\right) \ldots\left(a_{99}+99\right) \geq 100$! .

3 Find all pairs of (a, n) natural numbers such that $\varphi\left(a^{n}+n\right)=2^{n}$.
($\varphi(n)$ is the Euler function, that is, the number of integers from 1 up to n, relative prime to n)
4 The sequence $\left\{a_{n}\right\}$ is defined as follows: $a_{0}=1$ and $a_{n}=\sum_{k=1}^{[\sqrt{n}]} a_{n-k^{2}}$ for $n \geq 1$.
Prove that among $a_{1}, a_{2}, \ldots, a_{10^{6}}$ there are at least 500 even numbers.
(Here, $[x]$ is the largest integer not exceeding x.)

