Art of Problem Solving

AoPS Community

Moscow Mathematical Olympiad 1935

www.artofproblemsolving.com/community/c908733
by parmenides51

- tour 1

001 Find the ratio of two numbers if the ratio of their arithmetic mean to their geometric mean is $25: 24$

002 Given the lengths of two sides of a triangle and that of the bisector of the angle between these sides, construct the triangle.

003 The base of a pyramid is an isosceles triangle with the vertex angle α. The pyramids lateral edges are at angle ϕ to the base. Find the dihedral angle θ at the edge connecting the pyramids vertex to that of angle α.

004 A train passes an observer in $t_{1} \mathrm{sec}$. At the same speed the train crosses a bridge $\ell \mathrm{m}$ long. It takes the train $t_{2} \mathrm{sec}$ to cross the bridge from the moment the locomotive drives onto the bridge until the last car leaves it. Find the length and speed of the train.

005 Given three parallel straight lines. Construct a square three of whose vertices belong to these lines.

006 The base of a right pyramid is a quadrilateral whose sides are each of length a. The planar angles at the vertex of the pyramid are equal to the angles between the lateral edges and the base. Find the volume of the pyramid.

007 Find four consecutive terms a, b, c, d of an arithmetic progression and four consecutive terms $a_{1}, b_{1}, c_{1}, d_{1}$ of a geometric progression such that $a+a_{1}=27, b+b_{1}=27, c+c_{1}=39$, and $d+d_{1}=87$.

008 Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.

009 The height of a truncated cone is equal to the radius of its base. The perimeter of a regular hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find the angle ϕ between the cones generating line and its base.

010 Solve the system $\left\{\begin{array}{l}x^{2}+y^{2}-2 z^{2}=2 a^{2} \\ x+y+2 z=4\left(a^{2}+1\right) \\ z^{2}-x y=a^{2}\end{array}\right.$

011 In $\triangle A B C$, two straight lines drawn from an arbitrary point D on $A B$ are parallel to $A C$ and BC and intersect $B C$ and $A C$ at F and G, respectively. Prove that the sum of the circumferences of the circles circumscribed around $\triangle A D G$ and $\triangle B D F$ is equal to the circumference of the circle circumscribed around $\triangle A B C$.

012 The unfolding of the lateral surface of a cone is a sector of angle 120°. The angles at the base of a pyramid constitute an arithmetic progression with a difference of 15°. The pyramid is inscribed in the cone. Consider a lateral face of the pyramid with the smallest area. Find the angle α between the plane of this face and the base.

- tour 2

013 The median, bisector, and height, all originate at the same vertex of a triangle. Given the intersection points of the median, bisector, and height with the circumscribed circle, construct the triangle.

014 Find the locus of points on the surface of a cube that serve as the vertex of the smallest angle that subtends the diagonal.

015 Triangles $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ lie on different planes. Line $A B$ intersects line $A_{1} B_{1}$, line $B C$ intersects line $B_{1} C_{1}$ and line $C A$ intersects line $C_{1} A_{1}$. Prove that either the three lines $A A_{1}, B B_{1}, C C_{1}$ meet at one point or that they are all parallel.

016 How many real solutions does the following system have? $\left\{\begin{array}{l}x+y=2 \\ x y-z^{2}=1\end{array}\right.$
017 Solve the system $\left\{\begin{array}{l}x^{3}-y^{3}=26 \\ x^{2} y-x y^{2}=6\end{array}\right.$
solved below
Solve the system $\left\{\begin{array}{l}x^{3}-y^{3}=2 b \\ x^{2} y-x y^{2}=b\end{array}\right.$
018 Evaluate the sum: $1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}$.
019 a) How many distinct ways are there are there of painting the faces of a cube six different colors?
(Colorations are considered distinct if they do not coincide when the cube is rotated.)
b)* How many distinct ways are there are there of painting the faces of a dodecahedron 12 different colors?
(Colorations are considered distinct if they do not coincide when the cube is rotated.)
020 How many ways are there of representing a positive integer n as the sum of three positive integers?
Representations which differ only in the order of the summands are considered to be distinct.

021 Denote by $M(a, b, c, \ldots, k)$ the least common multiple and by $D(a, b, c, \ldots, k)$ the greatest common divisor of a, b, c, \ldots, k. Prove that:
a) $M(a, b) D(a, b)=a b$,
b) $\frac{M(a, b, c) D(a, b) D(b, c) D(a, c)}{D(a, b, c)}=a b c$.

