AoPS Community

Moscow Mathematical Olympiad 1938

www.artofproblemsolving.com/community/c908766
by parmenides51

- tour 1

038 In space 4 points are given. How many planes equidistant from these points are there? Consider separately
(a) the generic case (the points given do not lie on a single plane) and
(b) the degenerate cases.

- tour 2

039 The following operation is performed over points O_{1}, O_{2}, O_{3} and A in space.
The point A is reflected with respect to O_{1}, the resultant point A_{1} is reflected through O_{2}, and the resultant point A_{2} through O_{3}. We get some point A_{3} that we will also consecutively reflect through O_{1}, O_{2}, O_{3}.
Prove that the point obtained last coincides with A..
040 What is the largest number of parts into which n planes can divide space?
041 Given the base, height and the difference between the angles at the base of a triangle, construct the triangle.

042 How many positive integers smaller than 1000 and not divisible by 5 and by 7 are there?

