Art of Problem Solving

AoPS Community

Moscow Mathematical Olympiad 1940

www.artofproblemsolving.com/community/c908780
by parmenides51

- tour 1

054 Factor $(b-c)^{3}+(c-a)^{3}+(a-b)^{3}$.
055 It takes a steamer 5 days to go from Gorky to Astrakhan downstream the Volga river and 7 days upstream from Astrakhan to Gorky. How long will it take for a raft to float downstream from Gorky to Astrakhan?

056 How many zeros does 100 ! have at its end in the usual decimal representation?
057 Draw a circle that has a given radius R and is tangent to a given line and a given circle. How many solutions does this problem have?

058 Solve the system $\left\{\begin{array}{l}\left(x^{3}+y^{3}\right)\left(x^{2}+y^{2}\right)=2 b^{5} \\ x+y=b\end{array}\right.$
059 Consider all positive integers written in a row: 123456789101112131415... Find the 206788-th digit from the left.

060 Construct a circle equidistant from four points on a plane. How many solutions are there?
061 Given two lines on a plane, find the locus of all points with the difference between the distance to one line and the distance to the other equal to the length of a given segment.

062 Find all 3-digit numbers $\overline{a b c}$ such that $\overline{a b c}=a!+b!+c!$.

- tour 2

062- Find a four-digit number that is perfect square and such that the first two digits are the same and the last two as well.

063 Points A, B, C are vertices of an equilateral triangle inscribed in a circle. Point D lies on the shorter arc AB . Prove that $A D+B D=D C$.

064 How does one tile a plane, without gaps or overlappings, with the tiles equal to a given irregular quadrilateral?

065 How many pairs of integers x, y are there between 1 and 1000 such that $x^{2}+y^{2}$ is divisible by 7 ?

066 * Given an infinite cone. The measure of its unfoldings angle is equal to α. A curve on the cone is represented on any unfolding by the union of line segments. Find the number of the curves self-intersections.

067 Which is greater. 300 ! or 100^{300} ?
068 The center of the circle circumscribing $\triangle A B C$ is mirrored through each side of the triangle and three points are obtained: O_{1}, O_{2}, O_{3}. Reconstruct $\triangle A B C$ from O_{1}, O_{2}, O_{3} if everything else is erased.

069 Let a_{1}, \ldots, a_{n} be positive numbers. Prove the inequality:

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{4}}+\ldots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}} \geq n
$$

070 How many positive integers x less than 10000 are there such that $2^{x}-x^{2}$ is divisible by 7 ?

