

AoPS Community

1941 Moscow Mathematical Olympiad

Moscow Mathematical Olympiad 1941

www.artofproblemsolving.com/community/c908781 by parmenides51

-	tour 1
071	Construct a triangle given its height and median both from the same vertex and the radius of the circumscribed circle.
072	Find the number $\overline{523abc}$ divisible by 7,8 and 9.
073	Given a quadrilateral, the midpoints A, B, C, D of its consecutive sides, and the midpoints of its diagonals, P and Q . Prove that $\triangle BCP = \triangle ADQ$.
074	A point P lies outside a circle. Consider all possible lines drawn through P so that they inter- sect the circle. Find the locus of the midpoints of the chords segments the circle intercepts on these lines.
075	Prove that 1 plus the product of any four consecutive integers is a perfect square.
076	On the sides of a parallelogram, squares are constructed outwards. Prove that the centers of these squares are vertices of a square.
077	A polynomial $P(x)$ with integer coefficients takes odd values at $x = 0$ and $x = 1$. Prove that $P(x)$ has no integer roots.
078	Given points M and N , the bases of heights AM and BN of $\triangle ABC$ and the line to which the side AB belongs. Construct $\triangle ABC$.
079	Solve the equation: $ x + 1 - x + 3 x - 1 - 2 x - 2 = x + 2$.
080	How many roots does equation $\sin x = \frac{x}{100}$ have?
-	tour 2
081	a) Prove that it is impossible to divide a rectangle into five squares of distinct sizes. b) Prove that it is impossible to divide a rectangle into six squares of distinct sizes.
082	* Given $\triangle ABC$, divide it into the minimal number of parts so that after being flipped over these parts can constitute the same $\triangle ABC$.

AoPS Community

1941 Moscow Mathematical Olympiad

083	Consider $\triangle ABC$ and a point M inside it. We move M parallel to BC until M meets CA , then parallel to AB until it meets BC , then parallel to CA , and so on. Prove that M traverses a self-intersecting closed broken line and find the number of its straight segments.
084	a) Find an integer <i>a</i> for which $(x - a)(x - 10) + 1$ factors in the product $(x + b)(x + c)$ with integers <i>b</i> and <i>c</i> .
	b) Find nonzero and nonequal integers a, b, c so that $x(x-a)(x-b)(x-c) + 1$ factors into the product of two polynomials with integer coefficients.
085	Prove that the remainder after division of the square of any prime $p > 3$ by 12 is equal to 1 .
086	Given three points H_1, H_2, H_3 on a plane. The points are the reflections of the intersection point of the heights of the triangle $\triangle ABC$ through its sides. Construct $\triangle ABC$.
087	On a plane, several points are chosen so that a disc of radius 1 can cover every 3 of them. Prove that a disc of radius 1 can cover all the points.
088	Solve in integers the equation $x + y = x^2 - xy + y^2$.
089	Given two skew perpendicular lines in space, find the set of the midpoints of all segments of given length with the endpoints on these lines.
090	Construct a right triangle, given two medians drawn to its legs.

AoPS Online 🏟 AoPS Academy 🕸 AoPS &

Art of Problem Solving is an ACS WASC Accredited School.