Art of Problem Solving

AoPS Community

Moscow Mathematical Olympiad 1941

www.artofproblemsolving.com/community/c908781
by parmenides51

- tour 1

071 Construct a triangle given its height and median both from the same vertex and the radius of the circumscribed circle.

072 Find the number $\overline{523 a b c}$ divisible by 7,8 and 9 .
073 Given a quadrilateral, the midpoints A, B, C, D of its consecutive sides, and the midpoints of its diagonals, P and Q. Prove that $\triangle B C P=\triangle A D Q$.

074 A point P lies outside a circle. Consider all possible lines drawn through P so that they intersect the circle. Find the locus of the midpoints of the chords segments the circle intercepts on these lines.

075 Prove that 1 plus the product of any four consecutive integers is a perfect square.
076 On the sides of a parallelogram, squares are constructed outwards. Prove that the centers of these squares are vertices of a square.

077 A polynomial $P(x)$ with integer coefficients takes odd values at $x=0$ and $x=1$. Prove that $P(x)$ has no integer roots.

078 Given points M and N, the bases of heights $A M$ and $B N$ of $\triangle A B C$ and the line to which the side $A B$ belongs. Construct $\triangle A B C$.

079 Solve the equation: $|x+1|-|x|+3|x-1|-2|x-2|=x+2$.
080 How many roots does equation $\sin x=\frac{x}{100}$ have?

- tour 2

081 a) Prove that it is impossible to divide a rectangle into five squares of distinct sizes.
b) Prove that it is impossible to divide a rectangle into six squares of distinct sizes.

082 * Given $\triangle A B C$, divide it into the minimal number of parts so that after being flipped over these parts can constitute the same $\triangle A B C$.

AoPS Community

083 Consider $\triangle A B C$ and a point M inside it. We move M parallel to $B C$ until M meets $C A$, then parallel to $A B$ until it meets $B C$, then parallel to $C A$, and so on. Prove that M traverses a self-intersecting closed broken line and find the number of its straight segments.

084 a) Find an integer a for which $(x-a)(x-10)+1$ factors in the product $(x+b)(x+c)$ with integers b and c.
b) Find nonzero and nonequal integers a, b, c so that $x(x-a)(x-b)(x-c)+1$ factors into the product of two polynomials with integer coefficients.

085 Prove that the remainder after division of the square of any prime $p>3$ by 12 is equal to 1 .
086 Given three points H_{1}, H_{2}, H_{3} on a plane. The points are the reflections of the intersection point of the heights of the triangle $\triangle A B C$ through its sides. Construct $\triangle A B C$.
$\mathbf{0 8 7}$ On a plane, several points are chosen so that a disc of radius 1 can cover every 3 of them. Prove that a disc of radius 1 can cover all the points.

088 Solve in integers the equation $x+y=x^{2}-x y+y^{2}$.
089 Given two skew perpendicular lines in space, find the set of the midpoints of all segments of given length with the endpoints on these lines.

090 Construct a right triangle, given two medians drawn to its legs.

