AoPS Community

2014 Iranian Geometry Olympiad (junior)

www.artofproblemsolving.com/community/c908797
by ATimo, parmenides51

P1 $A B C$ is a triangle with $A=90$ and $C=30$. Let M be the midpoint of $B C$. Let W be a circle passing through A tangent in M to $B C$. Let P be the circumcircle of $A B C$. W is intersecting $A C$ in N and P in M. prove that $M N$ is perpendicular to $B C$.

P2 The inscribed circle of $\triangle A B C$ touches $B C, A C$ and $A B$ at D, E and F respectively. Denote the perpendicular foots from F, E to $B C$ by K, L respectively. Let the second intersection of these perpendiculars with the incircle be M, N respectively. Show that $\frac{S_{\triangle B M D}}{S_{\triangle C N D}}=\frac{D K}{D L}$
by Mahdi Etesami Fard
P3 Each of Mahdi and Morteza has drawn an inscribed 93-gon. Denote the first one by $A_{1} A_{2} A_{93}$ and the second by $B_{1} B_{2} B_{93}$. It is known that $A_{i} A_{i+1} / / B_{i} B_{i+1}$ for $1 \leq i \leq 93\left(A_{93}=A_{1}, B_{93}=\right.$ B_{1}). Show that $\frac{A_{i} A_{i+1}}{B_{i} B_{i+1}}$ is a constant number independent of i.
by Morteza Saghafian
P4 In a triangle ABC we have $\angle C=\angle A+90^{\circ}$. The point D on the continuation of $B C$ is given such that $A C=A D$. A point E in the side of $B C$ in which A doesnt lie is chosen such that $\angle E B C=\angle A, \angle E D C=\frac{1}{2} \angle A$. Prove that $\angle C E D=\angle A B C$.
by Morteza Saghafian
P5 Two points X, Y lie on the arc $B C$ of the circumcircle of $\triangle A B C$ (this arc does not contain A) such that $\angle B A X=\angle C A Y$. Let M denotes the midpoint of the chord $A X$. Show that $B M+C M>A Y$.
by Mahan Tajrobekar

