www.artofproblemsolving.com/community/c909331
by dcouchman, ThE-dArK-IOrD

- Day 1

1 Determine all polynomial $P(x) \in \mathbb{R}[x]$ satisfying the following two conditions:
(a) $P(2017)=2016$ and
(b) $(P(x)+1)^{2}=P\left(x^{2}+1\right)$ for all real number x.

2 Let $A B C D E$ be a regular pentagon with center M. A point $P \neq M$ is chosen on the line segment $M D$. The circumcircle of $A B P$ intersects the line segment $A E$ in A and Q and the line through P perpendicular to $C D$ in P and R.
Prove that $A R$ and $Q R$ are of the same length.
3 Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. When at the beginning of the turn there are $n \geq 1$ marbles on the table, then the player whose turn it is removes k marbles, where $k \geq 1$ either is an even number with $k \leq \frac{n}{2}$ or an odd number with $\frac{n}{2} \leq k \leq n$. A player win the game if she removes the last marble from the table.
Determine the smallest number $N \geq 100000$ such that Berta can enforce a victory if there are exactly N marbles on the tale in the beginning.
$4 \quad$ Find all pairs (a, b) of non-negative integers such that $2017^{a}=b^{6}-32 b+1$.

