Art of Problem Solving

AoPS Community

Moscow Mathematical Olympiad 1946

www.artofproblemsolving.com/community/c909512
by parmenides51

- tour 1

106 What is the largest number of acute angles that a convex polygon can have?
107 Given points A, B, C on a line, equilateral triangles $A B C_{1}$ and $B C A_{1}$ constructed on segments $A B$ and $B C$, and midpoints M and N of $A A_{1}$ and $C C_{1}$, respectively. Prove that $\triangle B M N$ is equilateral. (We assume that B lies between A and C, and points A_{1} and C_{1} lie on the same side of line $A B$)

108 Find a four-digit number such that the remainders after its division by 131 and 132 are 112 and 98 , respectively.

109 Solve the system of equations: $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=6 \\ x_{2}+x_{3}+x_{4}=9 \\ x_{3}+x_{4}+x_{5}=3 \\ x_{4}+x_{5}+x_{6}=-3 \\ x_{5}+x_{6}+x_{7}=-9 \\ x_{6}+x_{7}+x_{8}=-6 \\ x_{7}+x_{8}+x_{1}=-2 \\ x_{8}+x_{1}+x_{2}=2\end{array}\right.$
110 Prove that after completing the multiplication and collecting the terms ($1-x+x^{2}-x^{3}+\ldots-$ $\left.x^{99}+x^{100}\right)\left(1+x+x^{2}+\ldots+x^{99}+x^{100}\right)$
has no monomials of odd degree.
111 Given two intersecting planes α and β and a point A on the line of their intersection. Prove that of all lines belonging to α and passing through A the line which is perpendicular to the intersection line of α and β forms the greatest angle with β.

112 Through a point M inside an angle a line is drawn. It cuts off this angle a triangle of the least possible area. Prove that M is the midpoint of the segment on this line that the angle intercepts.

113 Prove that $n^{2}+3 n+5$ is not divisible by 121 for any positive integer n.

AoPS Community

1946 Moscow Mathematical Olympiad

114 Prove that for any positive integer n the following identity holds $\frac{(2 n)!}{n!}=2^{n} \cdot(2 n-1)!!$
115 Prove that if α and β are acute angles and $\alpha \mathbf{i} \beta$, then $\frac{\tan \alpha}{\alpha}<\frac{\tan \beta}{\beta}$

- tour 2

116 a) Two seventh graders and several eightth graders take part in a chess tournament. The two seventh graders together scored eight points. The scores of eightth graders are equal. How many eightth graders took part in the tournament?
b) Ninth and tenth graders participated in a chess tournament. There were ten times as many tenth graders as ninth graders. The total score of tenth graders was 4.5 times that of the ninth graders. What was the ninth graders score?

117 Prove that for any integers x and y we have $x^{5}+3 x^{4} y-5 x^{3} y^{2}-15 x^{2} y^{3}+4 x y^{4}+12 y^{5} \neq 33$.
119 On the legs of $\angle A O B$, the segments $O A$ and $O B$ lie, $O A>O B$. Points M and N on lines $O A$ and $O B$, respectively, are such that $A M=B N=x$. Find x for which the length of $M N$ is minimal.

119 Towns $A_{1}, A_{2}, \ldots, A_{30}$ lie on line $M N$. The distances between the consecutive towns are equal. Each of the towns is the point of origin of a straight highway. The highways are on the same side of $M N$ and form the following angles with it:
https://cdn.artofproblemsolving.com/attachments/a/f/6cfcac497bdd729b966705f1060bd4b1caba? png
Thirty cars start simultaneously from these towns along the highway at the same constant speed. Each intersection has a gate. As soon as the first (in time, not in number) car passes the intersection the gate closes and blocks the way for all other cars approaching this intersection. Which cars will pass all intersections and which will be stopped?

120 a) A bus network is organized so that:

1) one can reach any stop from any other stop without changing buses;
2) every pair of routes has a single stop at which one can change buses;
3) each route has exactly three stops?

How many bus routes are there?
b) A town has 57 bus routes. How many stops does each route have if it is known that

1) one can reach any stop from any other stop without changing buses;
2) for every pair of routes there is a single stop where one can change buses;
3) each route has three or more stops?

121 Given the Fibonacci sequence $0,1,1,2,3,5,8, \ldots$, ascertain whether among its first $\left(10^{8}+1\right)$ terms there is a number that ends with four zeros.

AoPS Community

122 On the sides $P Q, Q R, R P$ of $\triangle P Q R$ segments $A B, C D, E F$ are drawn.
Given a point S_{0} inside triangle $\triangle P Q R$, find the locus of points S for which the sum of the areas of triangles $\triangle S A B, \triangle S C D$ and $\triangle S E F$ is equal to the sum of the areas of triangles $\triangle S_{0} A B, \triangle S_{0} C D, \triangle S 0 E F$. Consider separately the case $\frac{A B}{P Q}=\frac{C D}{Q R}=\frac{E F}{R P}$.

