

AoPS Community

1994 Korea National Olympiad

Korean MO 1994

www.artofproblemsolving.com/community/c909688 by dcouchman, massnet, parmenides51

– Day 1

Problem 1 Let S be the set of nonnegative integers. Find all functions $f, g, h : S \to S$ such that f(m+n) = g(m) + h(n), for all $m, n \in S$, and g(1) = h(1) = 1.

Problem 2 Let α, β, γ be the angles of a triangle. Prove that $csc^2\frac{\alpha}{2} + csc^2\frac{\beta}{2} + csc^2\frac{\gamma}{2} \ge 12$ and find the conditions for equality.

Problem 3 In a triangle ABC, I and O are the incenter and circumcenter respectively, A', B', C' the excenters, and O' the circumcenter of △A'B'C'. If R and R' are the circumradii of triangles ABC and A'B'C', respectively, prove that:
(i) R' = 2R
(ii) IO' = 2IO

```
- Day 2
```

Problem 1 Consider the equation $y^2 - k = x^3$, where k is an integer.

Prove that the equation cannot have five integer solutions of the form $(x_1, y_1), (x_2, y_1-1), (x_3, y_1-2), (x_4, y_1-3), (x_5, y_1-4).$

Also show that if it has the first four of these pairs as solutions, then 63|k - 17.

Problem 2 Given a set $S \subset N$ and a positive integer n, let $S \oplus \{n\} = \{s + n/s \in S\}$. The sequence S_k of sets is defined inductively as follows: $S_1 = 1$, $S_k = (S_{k-1} \oplus \{k\}) \cup \{2k-1\}$ for k = 2, 3, 4, ...(a) Determine $N - \bigcup_{k=1}^{\infty} S_k$. (b) Find all n for which $1994 \in S_n$.

Problem 3 Let α, β, γ be the angles of $\triangle ABC$.

a) Show that $cos^2\alpha + cos^2\beta + cos^2\gamma = 1 - 2cos\alpha cos\beta cos\gamma$.

b) Given that $cos\alpha : cos\beta : cos\gamma = 39 : 33 : 25$, find $sin\alpha : sin\beta : sin\gamma$.

Art of Problem Solving is an ACS WASC Accredited School.

😥 AoPS Online 🕖 AoPS Academy 🙆 AoPS 🗱