Art of Problem Solving

AoPS Community

Korean MO 1994

www.artofproblemsolving.com/community/c909688
by dcouchman, massnet, parmenides51

- Day 1

Problem 1 Let S be the set of nonnegative integers. Find all functions $f, g, h: S \rightarrow S$ such that $f(m+n)=g(m)+h(n)$, for all $m, n \in S$, and $g(1)=h(1)=1$.

Problem 2 Let α, β, γ be the angles of a triangle. Prove that $\csc ^{2} \frac{\alpha}{2}+\csc ^{2} \frac{\beta}{2}+\csc ^{2} \frac{\gamma}{2} \geq 12$ and find the conditions for equality.

Problem 3 In a triangle $A B C, I$ and O are the incenter and circumcenter respectively, $A^{\prime}, B^{\prime}, C^{\prime}$ the excenters, and O^{\prime} the circumcenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$. If R and R^{\prime} are the circumradii of triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, respectively, prove that:
(i) $R^{\prime}=2 R$
(ii) $I O^{\prime}=2 I O$

- Day 2

Problem 1 Consider the equation $y^{2}-k=x^{3}$, where k is an integer.
Prove that the equation cannot have five integer solutions of the form $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}-1\right),\left(x_{3}, y_{1}-\right.$ $2),\left(x_{4}, y_{1}-3\right),\left(x_{5}, y_{1}-4\right)$.

Also show that if it has the first four of these pairs as solutions, then $63 \mid k-17$.
Problem 2 Given a set $S \subset N$ and a positive integer n, let $S \oplus\{n\}=\{s+n / s \in S\}$. The sequence S_{k} of sets is defined inductively as follows: $S_{1}=1, S_{k}=\left(S_{k-1} \oplus\{k\}\right) \cup\{2 k-1\}$ for $k=2,3,4, \ldots$
(a) Determine $N-\cup_{k=1}^{\infty} S_{k}$.
(b) Find all n for which $1994 \in S_{n}$.

Problem 3 Let α, β, γ be the angles of $\triangle A B C$.
a) Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1-2 \cos \alpha \cos \beta \cos \gamma$.
b) Given that $\cos \alpha: \cos \beta: \cos \gamma=39: 33: 25$, find $\sin \alpha: \sin \beta: \sin \gamma$.

